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Abstract

Individual investors trade excessively, sell winners too soon, and overweight stocks with
lottery features and low expected returns. This paper proposes and models a financial
innovation, called stock loan lotteries, that improves individual investor performance. An
individual investor signs a contract with an exchange promising to hold his shares of stock
for multiple periods. The exchange operates a stock loan marketplace. Instead of paying
each investor the lending fees on his individual shares, the exchange periodically holds a
lottery for the entire pool of lending fees. I extend the Barberis and Xiong (2009) two-period
model of realization utility to include stock loan lotteries. In frictionless markets, investors
demand high fixed stock loan fees to hold shares for two periods. Because prospect theory
investors overvalue low probability payoffs, they demand much lower fees denominated
in stock loan lottery tickets. In many cases, introducing stock loan lotteries provides
individual investors with greater expected utility and greater expected wealth. Stock loan
lotteries provide the greatest benefits to the poorest investors, who typically exhibit the
strongest lottery preferences. Introducing transactions costs, leverage constraints, and
taxes to the model enhances the benefits of stock loan lotteries. I propose a mechanism
for exchanges to structure stock loan lottery tickets as derivative securities.
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1. Introduction

Individual investors trade frequently and hold undiversified portfolios, so they earn lower

returns after controlling for risk and transactions costs. What would it take to motivate

individual investors to modify their costly behavior? This paper proposes and models a

financial innovation, called stock loan lotteries, with the potential to improve individual

investor performance. Stock loan lotteries are structured financial products that draw on

insights from prospect theory to optimally compensate individual investors for refraining

from excessive trading.

Barber and Odean (2000) find that individual investors turn over their portfolios frequently

and there is a strong negative relation between returns and trading frequency.2 French

(2008) estimates that active trading costs US equity investors 67 basis points annually.

Odean (1998) shows that the low average returns of individual investors are due to the

disposition effect, the tendency to sell winning positions and realize a gain. Weber and

Camerer (1998) identify a strong disposition effect in an experimental setting, suggesting

that the behavior is not unique to the Odean (1998) sample. The tendency of individuals to

trade frequently has substantial economic costs. Odean (1999) shows that the stocks that

individuals sell outperform the stocks that individuals buy by more than 3% in the following

year. Barber et al. (2009) analyze the complete record of Taiwanese equity trading activity

over four years and find that stocks individual investors sell outperform stocks individual

investors purchase by 3.8% over the next year. Several studies show that trading activity

for investors with less experience and education exhibits a more pronounced disposition

effect.3

2In data from a large discount broker between 1991 and 1996, the average household turns over more
than 75% of its portfolio annually.

3These include Feng and Seasholes (2005), Dhar and Zhu (2006), and Frazzini (2006).
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Individual investors tend to hold portfolios with a small number of individual stocks, hoping

to earn extraordinary returns. Kumar (2009) finds that individual investors overweight

stocks with “lottery features” including low share prices, high volatility and high skew.

Green and Hwang (2012) show that when firms go public, those with greater expected

skewness earn higher first-day returns and are purchased by more individuals. However,

these lottery stocks earn poor returns relative to the market. Investors who are poor,

inexperienced, and uneducated are especially likely to overweight lottery stocks. Dorn et al.

(2014) provide evidence that when lottery jackpots in a particular state or country increase,

trading activity by individual investors in the same state or country falls. Likewise, Barber

et al. (2009) document a substantial reduction in the trading of Taiwanese equities following

the introduction of legalized gambling. If investors treat lotteries and financial gambling as

substitutes, then investors might accept lottery tickets as compensation for not gambling

in the financial markets. I test this idea within the Barberis and Xiong (2009) discrete-time

model of realization utility.4

Shefrin and Statman (1993) note that understanding the principles of prospect theory

is necessary to designing successful financial products. For example, Breuer and Perst

(2007) show that behavioral biases can predict the popularity of structured convertible

bond products. Investors who participate in stock loan lotteries are paid, in the form of

lottery tickets, to hold positions for multiple periods. This policy is similar in spirit to

savings accounts and fixed income investments that incorporate lottery payoffs. Kearney

et al. (2010) document a strong demand for these financial instruments across the world

and over several centuries.

In the Barberis and Xiong (2009) model, investors only experience utility from realizing

4The model of realization utility is not the primary model in Barberis and Xiong (2009). However, it is
fully specified, and serves as the benchmark model in this paper.
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gains and losses. Investors have Tversky and Kahneman (1992) preferences, so they value

gains and losses instead of wealth, react asymmetrically to gains and losses, and evaluate

prospects using subjective “decision weights” rather than objective probabilities. Barberis

and Xiong (2009) find that these investors aspire to realize gains over multiple episodes,

resulting in a disposition effect. However, this tendency to reduce positions in assets with

positive excess returns leads to lower expected wealth.

Stock loan lotteries provide a potential solution. An individual investor and a centralized

exchange enter into a contract. The investor agrees to hold stocks in his portfolio for

multiple periods, and selling stocks early results in a severe penalty.5 This contract is

analogous to a Certificate of Deposit (CD) or a Guaranteed Investment Certificate (GIC).

The exchange operates a competitive marketplace in securities lending. When the exchange

lends shares, it allocates the fees, net of expenses and profits, to the lottery account of the

individual investor. Periodically, the exchange holds a lottery and pays the winner the

entire pool of stock lending fees. I find that investors with Tversky and Kahneman (1992)

preferences are reluctant to forgo frequent trading for stock loan fees. However, these

investors are willing to forgo something they overvalue, frequent trading, for something else

they overvalue, lottery tickets. In the data, poor investors have especially strong lottery

preferences. Since stock loan lotteries provide poorer investors a smaller probability of

winning a larger payoff, they effectively target heterogeneous preferences among individual

investors. Furthermore, the appeal of stock loan lotteries increases after introducing real

market frictions such as transactions costs, leverage constraints, and taxes.

The remainder of this paper is organized as follows. Section 2 compares allocations and

outcomes for three models of realization utility: the Barberis and Xiong (2009) model, a

model with stock loan fees, and a model with stock loan lotteries. This section assumes that

5Throughout this paper, I assume that selling stocks early is impossible under the terms of the contract.
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investors use objective probabilities to determine optimal allocations. Section 3 extends the

models to incorporate subjective decision weights and defines conditions where individual

investors have unconditionally greater welfare, meaning greater expected utility and greater

expected wealth. This section also discusses the model implications for heterogeneous

investors and market frictions. Section 4 discusses practical considerations in implementing

stock loan lotteries. Section 5 concludes.

2. Models of Realization Utility with Objective Probabilities

This section evaluates investor allocations and outcomes in three models of realization

utility, using objective probabilities to calculate expected utility. First, I describe the two-

period model in Barberis and Xiong (2009) and replicate their results. Next, I construct

a model where investors receive fixed stock loan fees if they commit to holding shares for

two periods. Finally, I construct a model where investors receive stock loan lottery tickets

if they commit to holding shares for two periods.

2.1. Baseline Two-Period Model of Realization Utility

There are three dates in the model: t = 0, t = 1, and t = 2. The duration of two periods is

calibrated to span one year. Benartzi and Thaler (1995) suggest that the magnitude of the

equity premium is consistent with investors who evaluate their performance at an annual

frequency. There is a representative investor who can invest in two securities. The risk-free

asset has a gross return of Rf = 1. The risky asset has an expected annual gross return

of µ and annual standard deviation of σ. If one year consists of two periods, the gross

one-period return of the risky asset is modeled as following a binomial distribution:


Rt = Ru = µ0.5 + ((µ2 + σ2)0.5 − µ)0.5 π = 0.5

Rt = Rd = µ0.5 − ((µ2 + σ2)0.5 − µ)0.5 1− π = 0.5
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Ru and Rd are gross risky-asset returns in the up and down states, π is the probability of

realizing the up state in a particular period, and Rt is i.i.d. across periods.

The investor maximizes expected utility where the value function, defined over gains and

losses, follows the Tversky and Kahneman (1992) cumulative prospect theory functional

form:


v(x) = xα x ≥ 0

v(x) = −λ(−x)β x < 0

The investor with prospect theory preferences is risk averse over gains and risk seeking over

losses, so α and β are restricted to the interval (0, 1). Also, the investor is more sensitive

to losses, so λ > 1.

The investor is endowed with initial wealth W0. At t = 0, the investor chooses to purchase

x0 shares of the risky asset at a price of P0 per share. The investor is not allowed to have

negative wealth at t = 1, so x0 is restricted to the interval: [0, W0
P0∗(1−Rd) ]. The remainder of

the investor’s wealth is allocated to the risk-free asset. Therefore, at t = 1, the investor’s

wealth is distributed:


Wu = W0 + P0X0(Ru − 1) π = 0.5

Wd = W0 + P0X0(Rd − 1) 1− π = 0.5

Table 1 summarizes the parameters for the Barberis and Xiong (2009) two-period model of

realization utility. At t = 1, the investor chooses xu and xd, state-contingent positions in

the risky asset. If xu < x0 or xd < x0, the investor sells some or all of his initial position,

realizing a gain or loss. The investor experiences a burst of prospect theory utility, its
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magnitude defined by the value function applied to the realized gain or loss. Since the

investor cannot have negative wealth at t = 2, there are two state-specific nonnegativity

constraints: xu is restricted to the interval: [0, Wu
P0∗Ru∗(1−Rd) ] and xd is restricted to the

interval: [0, Wd
P0∗Rd∗(1−Rd) ]. These maximum allocations depend on both the current stock

price and, through the investor’s wealth, his t = 0 allocation to the risky asset. At t = 2,

the investor liquidates his position in the risky asset and experiences a second burst of

prospect theory utility.

The investor chooses x0, xu, and xd to maximize expected prospect theory utility:

max
x0,xu,xd

E0[v((x0 − x1)(P1 − P0)) ∗ 1x1<x0 + v(x1 ∗ (P2 − Pb)) ∗ 1x1>0]

The first term measures the investor’s realization utility at t = 1, while the second term

measures the investor’s realization utility at t = 2. Pb is the investor’s cost basis, the

reference price for evaluating gains and losses at t = 2. The cost basis depends on whether

the investor purchases shares at t = 1 and whether the purchase follows an up state or

down state:


Pbu = Pbd = P0 x1 ≤ x0

Pbu = x0∗P0+(x1−x0)∗P0∗Ru
x1

x1 > x0

Pbd = x0∗P0+(x1−x0)∗P0∗Rd
x1

x1 > x0

The value function at each of the four possible t = 2 outcomes (uu, ud, du, dd) can be

written in terms of the choice variables:

vuu(x0, xu, xd) = v((x0 − xu)(Pu − P0)) ∗ 1xu<x0 + v(xu ∗ (Puu − Pbu)) ∗ 1xu>0

vud(x0, xu, xd) = v((x0 − xu)(Pu − P0)) ∗ 1xu<x0 + v(xu ∗ (Pud − Pbu)) ∗ 1xu>0
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vdu(x0, xu, xd) = v((x0 − xd)(Pd − P0)) ∗ 1xd<x0 + v(xd ∗ (Pdu − Pbd)) ∗ 1xd>0

vdd(x0, xu, xd) = v((x0 − xd)(Pd − P0)) ∗ 1xd<x0 + v(xd ∗ (Pdd − Pbd)) ∗ 1xd>0

Because π = 0.5, each node of the binomial tree is equally likely, and the investor maximizes

the average value associated with each outcome:

max
x0,xu,xd

0.25 ∗ (vuu + vud + vdu + vdd)

I solve the model numerically by calculating E0(v) for all feasible values of (x0, xu, xd)

and choosing arguments that maximize the value function. Table 2 summarizes the model

solutions for different values of µ, holding all other parameter values constant. When the

expected gross annual return of the risky asset is below 1.08, the investor’s optimal decision

is to invest all his wealth in the risk-free asset. Because the gross return of the risk-free

asset is calibrated to Rf = 1, this conservative investment strategy guarantees E0(v) = 0.6

Because prospect theory investors are more sensitive to losses than gains, they require a

substantial risk premium to invest in the risky asset.

When the expected return of the risky asset is between 1.09 and 1.11, the investor exhibits

a disposition effect. He chooses to invest some of his wealth in the risky asset at t = 0 and

takes some profits at t = 1 when the up state occurs. Because the investor has concave

realization utility over gains, he prefers to experience gains over multiple bursts. Once the

risk premium exceeds 12%, the investor prefers to increase his initial investment following

the realization of the up state. Because the investor’s portfolio appreciates in the first

period, he is able to take more risk before exhausting the nonnegative wealth constraint.

For assets with sufficiently high expected returns, the marginal expected prospect theory

utility of increasing expected gains in the second period exceeds the marginal utility of

6Setting Rf = 1 assumes investors evaluate the performance of the risky investment relative to the
risk-free rate instead of relative to 0.
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realizing gains at t = 1.

2.2. Two-Period Model of Realization Utility with Fixed Stock Loan Fees

In this model, the investor can only choose to purchase shares of the risky asset at t = 0

and promise to hold the position until t = 2. This commitment allows the centralized

exchange to lend shares to institutions who want to short sell the stock. The exchange

retains some proportion of the securities lending proceeds as a commission and pays the

remainder to the investor at t = 2.

Since the investor cannot execute closing trades at t = 1, there are two new constraints:

xu ≥ x0 and xd ≥ x0.1 The one new parameter in this model is f , the lending fee. I consider

two values for f : five basis points (0.0005), a realistic fee for US large-cap equities, and

50 basis points (0.005), a realistic fee for US small-cap equities or foreign equities. These

parameter estimates are within the range of stock lending fees in the D’Avolio (2002) and

Cohen et al. (2003) data.

Because the investor is guaranteed to receive fees at t = 2, x0 is restricted to the interval:

[0, W0

P0∗(1−R2
d−f)

]. This constraint ensures that if the down state occurs in both periods, the

investor’s initial wealth and the stock loan fees he receives at t = 2 will exactly cover his

losses. Since the investors do not receive fees for any t = 1 purchases, the restrictions on

xu and xd are unchanged from the baseline model.

In this model, the investor maximizes:

max
x0

E0(v) = 0.25 ∗ (vuu + vud + vdu + vdd)

The value at each possible t = 2 outcome is:

1Technically these constraints are in absolute value terms, but it is never optimal for the investor to
take a short position in the risky asset.
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vuu(x0) = v((P0 ∗ x0 ∗ f + x0 ∗ (Puu − P0))

vud(x0) = v((P0 ∗ x0 ∗ f + x0 ∗ (Pud − P0))

vdu(x0) = v((P0 ∗ x0 ∗ f + x0 ∗ (Pdu − P0))

vdd(x0) = v((P0 ∗ x0 ∗ f + x0 ∗ (Pdd − P0))

Table 3 summarizes the investor’s optimal allocations and outcomes in the two-period

model with fixed stock loan fees. The investor’s t = 2 allocation is always a corner solu-

tion. If the prospective two-period gamble has positive expected utility for some positive

allocation, then the gamble has strictly greater expected utility for a larger positive al-

location.2 Therefore, the investor either invests fully in the risky asset, exhausting the

nonnegative wealth constraint, or invests fully in the risk-free asset. If the investor has

a full position in the risky asset at t = 0, he holds the position at t = 1 following the

realization of a down state. He is unable to sell any shares, and he is unable to purchase

any more because the nonnegative wealth constraint still binds. When the up state is

realized at t = 1, the nonnegative wealth constraint no longer binds. The investor always

chooses to purchase more shares, but never exhausts the new constraint. Beyond a certain

point, the marginal utility over losses, which are weighted more heavily, starts exceeding

the marginal utility over gains.

For any particular fee, there is a small range of moderate µ in which the investor’s best

outcome with fixed stock loan fees of five basis points is worse than the investor’s best

outcome in the baseline model. Once the fees are sufficient to encourage the investor to

add to his position following positive returns in the first period, the investor’s best outcome

is better in the fees model. When the fees are higher, the break-even value of µ is higher.

For any given expected risky-asset return, increasing fees increases the investor’s maximum

2This follows from the functional form of the value function. See Appendix A for details.
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expected utility.

2.3. Two-Period Model of Realization Utility with Stock Loan Lotteries

In this model, the investor still promises to hold any shares he purchases at t = 0 until

t = 2. However, instead of receiving a stock loan fee (f ∗ P0 ∗ x0) at t = 2, the investor

receives stock loan lottery tickets. Periodically, the exchange holds a lottery and pays the

winner the entire pool of stock loan fees. The stock loan fees are net of the expenses and

profits of the exchange and the lottery itself is actuarially fair. In Kahneman and Tversky

(1979) notation, a single stock loan lottery at t = 2 is a gamble of (f∗P0∗x0
p , p; 0, 1 − p),

where p is the probability of winning the lottery.7 In this model, the parameters provide

three sources of variation. First, as in section 2.2, the stock loan fee (f) is either five basis

points or 50 basis points. Second, p is either 0.01 or 0.1. Third, there is either a single

lottery at t = 2 for all of the loan fees, or two lotteries at t = 1 and t = 2, each for half of

the loan fees. Each of these lotteries is equivalent to the Kahneman and Tversky (1979)

gamble: (0.5∗f∗P0∗x0
p , p; 0, 1− p).

When there is a single lottery at t = 2, the investor maximizes:

max
x0

E0(v) = 0.25∗ [p∗(vuuw+vudw+vduw+vddw)+(1−p)∗(vuul+vudl+vdul+vddl)]

In this notation, w is the state where the investor wins the stock loan lottery and l is

the state where the investor loses the stock loan lottery. The values in the two outcomes

following the realization of two up states are:

vuuw(x0) = v((f∗p0∗x0p + x0 ∗ (Puu − P0))

vuul(x0) = v((x0 ∗ (Puu − P0))

In the contingent value formulas for the six other outcomes (udw, udl, duw, dul, ddw, ddl),

7I assume the investor references the gamble to the baseline model instead of the fees model.

11



the only difference is the share price after two periods, which is either Pud, Pdu, or Pdd. In

the version of the model with lotteries at t = 1 and t = 2, there are 16 possible outcomes,

depending on whether the up or down state is realized in each period, and whether the

investor wins or loses the two lotteries. The investor maximizes:

max
x0

0.25∗ [p2 ∗ (vuuww + vudww + vduww + vddww) +p(1−p)∗ (vuuwl + vudwl + vduwl + vddwl +

vuulw + vudlw + vdulw + vddlw) + (1− p)2 ∗ (vuull + vudll + vdull + vddll)]

Because the investor savors each burst of prospect theory utility distinctly, a lone lottery

win at t = 1 by itself has a different value than a lone lottery win at t = 2 accompanied

by realized gains or losses. The four representative value formulas are:

vuuww(x0) = v(0.5f∗p0∗x0p ) + v(0.5f∗p0∗x0p + x0 ∗ (Puu − P0))

vuuwl(x0) = v(0.5f∗p0∗x0p ) + v(x0 ∗ (Puu − P0))

vuulw(x0) = v(0.5f∗p0∗x0p + x0 ∗ (Puu − P0))

vuull(x0) = v(x0 ∗ (Puu − P0))

Whether there are one or two lotteries, the non-negative wealth constraint requires that

x0 is restricted to the interval: [0, W0

P0∗(1−R2
d)

]. The worst case scenario is that both periods

are down states and the investor doesn’t win any lotteries. The optimal strategy for the

investor is the same in the fees model and the lottery model. If the expected return is below

some threshold, the investor keeps all his wealth in the risk-free asset. If the expected return

is above the threshold, the investor exhausts the nonnegative wealth constraint at t = 0.

If the risky asset earns a positive return in the first period, the investor buys more shares

at t = 1, but not enough to exhaust the new constraint. If the risky asset earns a negative

return in the second period, the t = 0 constraint still binds.

Table 4 summarizes the investor’s best outcomes in each version of the model with stock
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loan lotteries. The investor always prefers earning a fixed stock loan fee to participating

in a single risky lottery at t = 2 with the same expected value. Furthermore, holding the

expected value of the lottery constant, the investor always prefers the lottery with p = 0.1

to the lottery with p = 0.01. The investor always prefers participating in two smaller

lotteries at t = 1 and t = 2 to one larger lottery at t = 2. These results follow from the

concavity of the prospect theory value function over gains. It is possible for the investor

to have a slight preference for the model with two small lotteries at t = 1 and t = 2 to the

model with the equivalent fixed fees because of the possibility of realizing utility in two

time periods. Of course, the investor always prefers receiving a stock loan fee of 50 basis

points to receiving a fee of five basis points.

3. Model Extensions

This section develops the two-period models of realization utility. Following Tversky and

Kahneman (1992), the prospect theory investor calculates expected utility using decision

weights, not probabilities. Investors are willing to pay more than the actuarially fair price

to participate in lotteries, suggesting that introducing lotteries increases the maximum

expected utility. Investors who enter into stock loan lottery contracts do not realize gains

prematurely and therefore can also earn higher returns. In an economy with many agents,

investors with different levels of wealth will have different Kahneman and Tversky (1979)

gambles in the lottery. Poor investors have greater exposure to lottery features. This

feature is appealing because, in the data, poor investors hold larger proportions of lottery

stocks. Finally, market frictions increase the appeal of lotteries by increasing the motivation

for investors to refrain from excessive trading.

3.1. Decision Weights

Tversky and Kahneman (1992) use experimental data to estimate a functional form for
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w(p), the “weighting function” that converts objective probabilities into decision weights.

Other studies confirm the shape of the decision weighting function in non-experimental

settings. Wakker et al. (1997) show that these decision weights are necessary to explain

the additional premium individuals require to purchase insurance with a nonzero default

probability. Polkovnichenko and Zhao (2013) show that the probability weights implied by

US index options prices are consistent with the prospect theory decision weights. A lottery

is a gamble of the form (1,p;0,1-p).8 For nonnegative gambles, Tversky and Kahneman

(1992) estimate the weighting function as a two-part power function:

w+(p) = pγ

(pγ+(1−p)γ)1/γ

Likewise, for nonpositive gambles, the weighting function is:

w−(p) = pδ

(pδ+(1−p)δ)1/δ

Using experimental data, Tversky and Kahneman (1992) estimate γ = 0.61 and δ = 0.69.

These values imply that investors overvalue gambles, both positive and negative, with low

probabilities of success. Although the experimental evidence in Tversky and Kahneman

(1992) uses small wagers, 9

Figure 1 shows the potential for stock loan lotteries to increase the investor’s maximum

expected utility. If an investor with Tversky and Kahneman (1992) preferences receives a

certain gain of one dollar, his utility is v(1) = 10.88 = 1. On the other hand, suppose the

investor receives a free lottery ticket with an expected payoff of one dollar. This lottery

ticket can be written as a Kahneman and Tversky (1979) gamble (1/p, p; 0, 1 − p) with

expected utility E0(v|p) = w+(p)∗v(1/p). The dotted line shows the expected utility from

8The investor’s reference point is receiving a free lottery ticket.
9Kachelmeier and Shehata (1992) show that for large wagers, risk seeking over small probabilities holds

for both positive and negative rewards. They offer lotteries in China, where the amount of the wager
comprises a substantial portion of the subject’s income. Likewise, Cameron (1999) shows that Indonesian
subjects fail to play the optimal strategy in the ultimatum game for high stakes.
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the lottery payoff as a function of p. For values of p such that E0(v|p) > 1, the investor

prefers the lottery payout to a sure gain. Individuals overvalue all lotteries with p ≤ 0.24.

For these values of p, the expected utility from the lottery payoff is strictly decreasing in p.

This relation holds because the curvature of w+(p) function is stronger than the concavity

of the value function over gains in this region. Consistent with this functional form, Cook

and Clotfelter (1993) show that lottery ticket sales are positively related to jackpot size. In

the context of this model, the optimal lottery is not necessarily the one with the smallest

odds of winning the biggest prize. The prospect theory investor places an emphasis on

reducing losses. Lotteries that pay off more frequently have more potential to reduce the

negative utility from negative risky-asset returns.

Table 5 summarizes the best investor outcomes in two-period models of realization utility,

calculating expected value using both objective probabilities and decision weights. I solve

all 11 specifications of the model from Section 2. In specification 1, the Barberis and Xiong

(2009) baseline model (B), the investor chooses t = 0 and t = 1 risky asset positions subject

to wealth constraints. In the remaining models, the investor cannot liquidate positions at

t = 1. Specifications 2 and 3 are models with fixed loan fees (F). The investor receives a

fee (f) for allowing the exchange to lend shares between t = 0 and t = 2. The remaining

models include stock loan lotteries. In specifications 4 through 7, there is a single lottery

at t = 2 and the investor has probability p of winning f ∗ P0 ∗ x0/p. In specifications 8

through 11, there are lotteries at t = 1 and t = 2 and the investor has probability p of

winning 0.5 ∗ f ∗ P0 ∗ x0/p in each lottery. For each specification, the top panel presents

the investor’s maximum expected prospect theory utility using objective probabilities. The

bottom panel presents the investor’s maximum expected prospect theory utility calculated

using decision weights.

In the baseline model, using decision weights has little effect on optimal allocations because
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w−(0.25) is about 1% larger than w+(0.25). The dd outcome always corresponds to a loss

and the uu outcome always corresponds to a gain. For the range of µ values, the ud and

du outcomes correspond to gains because Ru ∗Rd > 1. In the baseline model, the investor

chooses similar optimal allocations using decision weights instead of objective probabilities.

For all specifications with stock loan lotteries, the investor’s maximum expected utility is

greater when prospect theory utility is calculated with decision weights rather than with

objective probabilities. The investor’s best outcome with stock loan lotteries is better than

the investor’s best outcome with fixed stock loan fees if utility is calculated with decision

weights, rather than similar or worse if utility is calculated with objective probabilities. The

fixed stock loan fees increase gains or decrease losses by a marginal amount with certainty.

On the other hand, stock loan lotteries increase gains or decrease losses dramatically for a

small proportion of outcomes that investors substantially overvalue.

As a result, relative to the Barberis and Xiong (2009) two-period model, it is much easier

to increase expected utility through stock loan lotteries than through stock loan fees. For

instance, in the baseline model, investors only hold a risky-asset position when the risk

premium is at least 10%. A fixed stock loan fee of 50 basis points motivates the investor to

hold a risky-asset position when the risk premium is 9%. When this 50 basis point fee is

restructured as two small lotteries with low win probabilities, the minimum risk premium

falls to 6%. Benartzi and Thaler (1995) argue that investors require a high risk premium

to own stocks because they reevaluate their portfolios too frequently. Implementing the

stock loan lotteries forces investors to hold risky assets for longer horizons. Stock loan

lotteries are optimal compensation for these investors and effectively lower the required

rate of return.

3.2. Conditions for Welfare Gains
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Barberis (2013) argues that prospect theory complements traditional economic theory.

Individuals care about expected wealth and variability of wealth as well as gains or losses

relative to a reference point. In this section, I argue that when two conditions are satisfied,

introducing stock loan lotteries yields unconditional welfare gains. First, the investor must

experience greater expected prospect theory utility in a model with stock loan lotteries

than he experiences in the baseline model. The expected prospect theory utility calculation

should use decision weights instead of objective probabilities because utility is a subjective

measure of the investor’s happiness:

E∗0(vL) > E∗0(vB)

Second, if the investor maximizes E[U(W2)] and has risk-neutral preferences, he must have

higher expected wealth at t = 2 in the model with stock loan lotteries than he has in the

baseline model:10

E∗0 [(W2,L)] > E∗0 [(W2,B)]

The expected wealth calculation should use objective probabilities to measure the investor’s

actual financial position at t = 2. In the baseline model, the only source of wealth is the

terminal portfolio value:

E0[(W2,B)] = 0.25 ∗ [Wuu +Wud +Wdu +Wdd]

In the model with stock loan lotteries, the investor also earns the expected value of the

lottery payoff:

E0[(W2,L)] = [P0 ∗ x0 ∗ f ] + 0.25 ∗ [Wuu +Wud +Wdu +Wdd]

The terminal wealth at each of the possible t = 2 nodes depends on the t = 0 and condi-

10Prospect theory investors are risk averse over gains and risk seeking over losses. The assumption of
risk neutrality splits the difference.
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tional t = 1 allocations:

Wuu(x0, xu, xd) = W0 + P0 ∗ x0 ∗ (R2
u − 1) + Pu ∗ (xu − x0) ∗ (Ru − 1)

Wud(x0, xu, xd) = W0 + P0 ∗ x0 ∗ (Ru ∗Rd − 1) + Pu ∗ (xu − x0) ∗ (Rd − 1)

Wdu(x0, xu, xd) = W0 + P0 ∗ x0 ∗ (Rd ∗Ru − 1) + Pd ∗ (xd − x0) ∗ (Ru − 1)

Wdd(x0, xu, xd) = W0 + P0 ∗ x0 ∗ (R2
d − 1) + Pd ∗ (xd − x0) ∗ (Rd − 1)

Because Ru +Rd = 2
√
µ, the expected wealth calculations simplify to:

E0[(W2,B)] = W0 + P0x0(µ− 1) + 0.5[Pu(xu − x0) + Pd(xd − x0)](
√
µ− 1)

E0[(W2,L)] = [P0x0f ] +W0 + P0x0(µ− 1) + 0.5[Pu(xu − x0) + Pd(xd − x0)](
√
µ− 1)

Figure 2 presents conditions in which introducing stock loan lotteries delivers unconditional

welfare gains. For all points above the solid curve, investors in the model with stock loan

lotteries have strictly higher welfare than investors in the baseline model. The lottery

model uses a single lottery with p = 0.1 at t = 2. In other words, for these points in

(µ, f) space, the utility-maximizing allocation in the model with lotteries produces greater

expected utility and greater expected wealth than the utility-maximizing allocation in the

baseline model. The solid curve is kinked, first decreasing in µ to some threshold value of

µ. For risky-asset returns above this threshold, the investor already wants to maximize his

holdings and any positive f is sufficient to produce better welfare.

The dotted curve is also kinked, but for a wide range of expected asset returns and lend-

ing fees, introducing stock loan lotteries unconditionally improves investor welfare, while

introducing stock loan fees does not. This region is represented by the area between the

curves. For moderate values of µ, this range could represent a significant proportion of

all stocks. For example, investors require a flat fee of 143 basis points to hold stocks with

µ = 1.08, but an expected fee of only 30 basis points denominated in lottery tickets. This
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range widens for lower values of µ, however the wider range is likely to include fewer stocks

since it is rare for US stocks to command high lending fees. Table 5 suggests that lotteries

that pay off more frequently with lower probabilities have the potential to further widen

the region of potential welfare gains.

3.3. Implications for Equilibrium with Heterogeneous Agents

In equilibrium, there are many individual investors. All investors benefit from the lottery

because the probability of any individual investor winning the lottery is in the region where

the decision weight exceeds the objective probability. Individual investors have different

risky asset holdings because of income inequality, and a number of studies suggest that

poor individual investors exhibit especially strong biases. For instance, Dhar and Zhu

(2006) show that the trading activity of poor investors shows a larger disposition effect,

while Kumar (2009) shows that poor investors hold a larger proportion of “lottery stocks”

in their portfolios.

Consider a stock loan marketplace with many individual investors, and each investor, i,

owns X0,i shares of the risky asset at t = 0. Each investor’s probability of winning the

lottery depends on the ratio of his allocation to the aggregate allocation of all investors,

X0,A. Since investors in the lottery model who buy the risky asset always exhaust their

non-negative wealth constraints, each investor’s probability of winning the lottery is also

equivalent to his wealth share:

p =
X0,i

X0,A
=

W0,i

W0,A

One way to examine the relative appeal of stock loan lotteries to different investors is to

see how a standardized measure of utility varies according to wealth share. Define Π as

this standardized measure of utility per unit of wealth:
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Πi =
E0[U(W2,i)|p,v(),w+(p)]

W0,i

Figure 3 shows how standardized utility varies according to wealth share in four different

models of realization utility. The solid curves show standardized utility for models with

a single stock loan lottery at t = 2 and stock loan fees of five and 50 basis points. The

dotted curves show standardized utility for models with stock loan fees of five and 50 basis

points. For all models, the annualized expected gross return of the risky asset (µ), is 1.12.

In all four models, standardized utility is strictly downward sloping with respect to wealth

share. In other words, these models are regressive in the sense that poor investors benefit

disproportionately in utility terms.

Models with stock loan fees are regressive because the prospect theory value function is

concave over gains, so the marginal utility of wealth is strictly decreasing with increasing

wealth. The concavity of the value function implies that increasing loan fees also benefits

the poorest investors disproportionately. The economy with stock loan lotteries is even

more regressive. This follows from the functional form of the decision weighting function.

The ratio w+(p)/p is strictly decreasing with increasing p. The poorest investors have

the lowest probabilities of winning the lotteries and place the highest value on the lotteries

relative to the value implied by objective probabilities. For this reason, the regressive effect

of increasing f is greater in the model with stock loan lotteries than in the model with

stock loan fees.

It is also straightforward to show that the idiosyncratic volatility and idiosyncratic skew

of the lotteries are both strictly decreasing in wealth. Since the investment environment

consists of only a single risky asset, the lottery payoffs are the only source of idiosyncratic

returns. In a model with a single lottery, the proceeds from winning are f ∗W0,A. So for

any given investor i, the gross returns from winning the lottery are:
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RL =
f∗W0,A

W0,i
= f

p .

The gross returns from losing the lottery are 0. The idiosyncratic volatility and skew

are:

E(R2
L) = p ∗ (fp )2 = f2

p

E(R3
L) = p ∗ (fp )3 = f3

p2

Kumar (2009) shows that poor investors have especially strong preferences for stocks with

positive idiosyncratic volatility and idiosyncratic skew. Since idiosyncratic volatility and

idiosyncratic skew of the lotteries are both strictly decreasing in wealth share, introducing

the lotteries would effectively target heterogeneous preferences.

3.4. Market Frictions: Transactions Costs, Leverage, and Taxes

The three models of realization utility assume that markets are frictionless. However,

excessive trading by individual investors is a problem, in part, because trading is costly.

French (2008) estimates that the annual total cost of active trading consistently ranges from

61 to 74 basis points from 1990 to 2006. These constant trading costs are the result of two

countervailing trends. As studies such as Novy-Marx and Velikov (2016) document, the

cost of trading a share of stock decreases significantly over time. On the other hand, French

(2008) and others document a significant upward time trend in share turnover. I model

trading costs by introducing a new parameter, ρ, representing round-trip transactions costs.

Since the two periods in the model correspond to a year, and all positions are closed at

t = 2, I follow the French (2008) estimates and set ρ = 0.013.

Another important market friction is the cost and availability of leverage. The Barberis

and Xiong (2009) model assumes that investors can borrow or lend at the risk-free rate,

and the non-negative wealth constraint ultimately determines the maximum leverage. In
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fact, Frazzini and Pedersen (2014) show that leverage constraints lead to high demand and

low expected returns for high-beta assets. Barberis and Xiong (2009) acknowledge that

while optimal allocations imply the use of substantial leverage, only a small proportion

of individual investors use leverage. Since the US Federal Reserve Board has maintained

a 50% initial margin requirement since 1974, I model leverage constraints by limiting the

investor’s risky asset investment to twice his wealth.3 In all three models, this restricts

the t = 0 allocation to x0 ≤ 2∗W0
P0

, and restricts the state-contingent investments at t = 1:

xu ≤ 2∗Wu
Pu

and xd ≤ 2∗Wd
Pd

.

Figure 4 shows how market frictions change the potential welfare benefits of stock loan

lotteries. For different values of µ, the annualized expected gross return of the risky asset,

I solve all three models in a perfect market as well as a market with trading costs and

leverage constraints. For each value of µ, in each environment, I calculate fF and fL, the

minimum fee that provides investors in the fee and lottery models unconditionally greater

welfare than in the baseline model. For each µ, a proxy for the potential welfare benefits of

introducing stock loan lotteries is max[fF (µ)−fL(µ), 0]. The solid line shows the potential

for welfare improvement with market frictions, while the dotted line shows the potential

for welfare improvement with perfect markets. Market frictions increase the potential for

lotteries to improve welfare for two reasons. First, trading costs reduce the effective return

of all risky investments. As Figure 2 shows, it is far easier to persuade investors to buy

risky assets with low expected returns by using stock loan lotteries than by using stock

loan fees. Second, even when allocations using maximum leverage are lower than those

chosen in a model without leverage constraints, investors still typically choose allocations

with xu < x0 to spread out the realization of gains over multiple episodes. In a model with

capital gains taxes, the value of stock loan lotteries increases even further.

3Regulation T allows the Federal Reserve to change this margin requirement, but the Federal Reserve
has never changed it.
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4. Implementing Stock Loan Lotteries in Practice

This section addresses practical questions about how to implement stock loan lotteries.

What type of laboratory experiment could test whether there is a demand among individual

investors for stock loan lotteries? What are the relevant lottery laws and regulations in

countries with developed equity markets? Is it possible for exchanges to offer financial

securities that replicate lottery payouts?

4.1. Survey Evidence

The Tversky and Kahneman (1992) decision weighting function specifies that prospect

theory investors prefer fair lotteries with low win probabilities to certain gains. In the

Barberis and Xiong (2009) model of realization utility, providing lottery payoffs to investors

as compensation to hold positions for longer can lead to improved outcomes. In practice,

would individuals have demand for stock loan lottery tickets? This section proposes a

randomized controlled trial (RCT) experiment to test this question.4 In this research

design, there is a preliminary stage in which the participant allocates a portfolio among

a risky investment and a risk-free investment at t = 0, observes the risky asset return

at t = 1, and rebalances his portfolio. In the second stage, the participant allocates his

portfolio between a risky asset and a risk-free asset at t = 0 and must hold the portfolio

until t = 2. As compensation for forgoing the opportunity to rebalance at t = 1, the control

group is offered a fixed fee, while the treatment group is offered a lottery payoff.

Survey participants will be chosen using Amazon’s Mechanical Turk (MTurk) platform.

Casler et al. (2013) find that the MTurk community is more demographically diverse than

samples recruited on college campuses or via social media. Survey participants will receive

$2 for a task which takes an average of 15 minutes to complete. Camerer and Hogarth

4At this time, the survey has not been administered pending institutional review board approval.
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(1999) review the literature on field experiments with varying levels of financial incentives.

The authors find that in similar types of experiments, increasing incentives does not have a

significant impact on average behavior. Cryder et al. (2012) show that MTurk participants

exhibit standard behavioral biases and their average responses are similar to other survey

populations. However, some MTurk participants do not pay attention to or understand

the instructions, introducing noise into the responses.

The dependent variable is the percentage of the portfolio allocated to the risky investment

in the second stage. The coefficient of interest is the treatment dummy. Control variables

include demographic information and proxies for financial sophistication. The demographic

controls are age, income, education, marital status, gender, and state of residence. Barber

and Odean (2001) show that men turn over their portfolios more frequently than women.

Kumar (2009) provides evidence that socioeconomic factors explain investment in stocks

with lottery features. Dorn et al. (2014) provide evidence that the state of residence could

impact financial gambling through differences in major lottery jackpots. Variables that

proxy for financial sophistication include home ownership status, employment status, and

employment experience in the financial industry. Feng and Seasholes (2005), Dhar and Zhu

(2006), and Frazzini (2006) document a more pronounced disposition effect in the trading

activity of less experienced investors. Alevy et al. (2007) show that professional traders

outperform students in experimental tasks.

Other control variables include proxies for risk aversion. Risk aversion can be ascertained

by the respondent’s allocations in the preliminary task. Furthermore, participants will

complete questions developed by Weber et al. (2002) to measure risk aversion in the

areas of investments and gambling.5 The risky asset allocation should relate positively

5Weber et al. (2002) ask respondents: “Please indicate your likelihood of engaging in each activity or
behavior. Provide a rating from 1 (Very unlikely) to 5 (Very likely).” One activity in the investment risk
taking questionnaire is: “Investing 5% of your annual income in a very speculative stock.” One activity in
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to both the Sharpe ratio of the risky asset and the amount of the fee. In the research

design, individuals participating in the survey will be required to complete the preliminary

task and the control or treatment task five times each. This will allow me to estimate a

specification of the model that includes individual fixed effects. If the coefficient estimate in

the specification with individual fixed effects does not change much, this addresses concerns

that the individuals in the treatment and control groups are systematically different.

4.2. The Regulatory Environment

Since individuals are willing to pay much more for lottery tickets than the actuarially fair

value, lotteries can be thought of as a form of voluntary taxation. As a result, national

governments set laws and regulations for the administration of any lotteries within its

borders. In the United States, the country with the largest developed equity markets,

lotteries are run by individual states and territories and are subject to their laws. Six states

prohibit lotteries completely. 6 There are games offered by a single state, a group of states,

and since 2009, all individual state lotteries also offer Mega Millions and Powerball.

It is illegal in the United States for private companies to offer promotions that require a

purchase by participants. The United States Federal Trade Commission (FTC) only allows

companies to offer games of chance if any individual can participate for free by filling out

an entry form. Other agencies, including the United States Postal Service (USPS) and the

Federal Communications Commission (FCC), are also responsible for enforcing these laws.

Individual states have laws requiring firms offering sweepstakes to meet certain obligations.

If a sweepstakes involves telephone calls, the FTC’s Telemarketing Sales Rule requires

specific disclosures, such as the odds of winning a prize, how to participate without buying

anything, and that no purchase or payment is required to win. An Illinois government

the gambling risk taking questionnaire is: “Betting a day’s income at a high stake poker game.”
6The states that prohibit lotteries are Alabama, Alaska, Hawaii, Mississippi, Nevada, and Utah.
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report on government privatization states that as of 2006, no US state has completely

privatized its lottery.7 According to the report, Illinois and Connecticut both had difficulty

finding private firms willing and able to make competitive bids to operate lotteries.

While the lottery laws in the United States vary across 50 states and several territories,

other countries with developed markets have a more manageable regulatory structure. Five

regional organizations oversee the operation of Canadian lotteries. The Atlantic Lottery

Corporation oversees lotteries in New Brunswick, Prince Edward Island, Nova Scotia, and

Newfoundland and Labrador. Loto-Quebec, Ontario Lottery and Gaming Corporation, and

British Columbia Lottery Corporation are the governing bodies for their provinces while

Western Canada Lottery Corporation governs the remaining provinces and territories. The

five regional organizations jointly own the Interprovincial Lottery Corporation, which is

responsible for administering national lottery games. Australian lotteries are operated by

government-owned firms and private firms. Lotterywest is a state-owned and operated

firm that manages lotteries in Western Australia, while Tattersall is a government-licensed

firm that runs several lotteries throughout the remaining states in Australia. Charitable

organizations operate lotteries where the prizes include houses, cars, and furniture. The

national government sets some regulations, while the individual states grant licenses to

lotteries. The Interactive Gambling Act of 2001 prohibits foreign firms from marketing

internet gambling to Australian citizens.

The United Kingdom established The National Lottery Commission in 1994 to regulate

the UK National lottery. The National Lottery Commission issued the license to operate

the lotteries to the Camelot Group in 1994 and the license has been subsequently reissued.

The Camelot Group was formed as a consortium of firms with expertise in various areas of

administering lotteries, such as information technology, marketing, and retail sales. The

7The website of the report is: http://cgfa.ilga.gov/Upload/2006Gov Privatization Rprt.pdf
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lottery returns approximately half of the proceeds of ticket purchases as prizes, one quarter

to charities, and one quarter in taxes, commissions, and management fees. The Camelot

Group goes to great efforts to protect players by identifying and supporting potentially

compulsive gamblers and by providing independent private wealth management for jackpot

winners.8 In 2010, The Camelot Group was purchased by The Ontario Teachers Pension

Plan, an independent private Canadian defined-benefit pension administration firm.

One avenue for implementing stock loan lotteries is by offering the lottery tickets through

one of the regional lottery operators, subject to the national laws. Then the centralized

exchange could purchase these tickets with the lending fees and issue them to the individual

investors. This system is more realistic in countries with relatively few operators, such

as Canada, Australia, and the UK. This infrastructure would require that the regional

operator verify the individual investors jurisdiction. A simpler option, explored in the next

section, is that lottery tickets are structured as a derivative security.

4.3. Stock Loan Lottery Tickets as Derivative Securities

Stock loan lottery tickets could be structured as a derivative with a payoff that is a random

variable linked to the price of a portfolio of securities. For example, a “Pennies Series X”

derivative has a payoff of 1 if X is the pennies (hundredths) digit of the closing spot price

of an equity index on a particular day. Because major equity indices are portfolios of a

large number of individual stocks in specified proportions, it is not feasible to manipulate

the pennies digit of the index spot price by buying or selling the component securities.

Although Harris (1991) and others identify the propensity for round number clustering

in the trading prices of individual stocks, this is not likely to translate to round number

clustering in a diversified portfolio of these stocks.

8The website of The Camelot Group is: http://www.camelotgroup.co.uk/
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Table 5 provides evidence suggesting that there is no clustering in the closing spot prices

of two major diversified equity indices. The black bars show the frequencies of the pennies

digits in the closing prices of the S&P 500 index between December 30, 1927 and April

21, 2017. The S&P 500 index is a capitalization-weighted index of 500 diversified large US

public equities. The gray bars show the frequency of each of the pennies digits in the closing

prices of the Nikkei 225 index between January 5, 1970 and April 21, 2017. The Nikkei 225

index is a price-weighted index of 225 diversified large US public equities. There are no

abnormal frequencies at zero pennies or any other value. This suggests that a centralized

exchange could issue stock loan lottery tickets in the form of financial derivatives instead

of holding traditional lottery drawings, potentially bypassing regulations.

5. Conclusion

The excessive trading of individual investors has large economic consequences. Private firms

are motivated to exploit the psychological biases that cause excessive trading. For instance,

brokerage firms encourage investors to use mobile apps in order to trade more frequently.

Stock loan lotteries have the potential to reduce excessive trading by individual investors.

Investors with realization utility need to be compensated to forgo the excessive trading

necessary to realize gains. It is cheaper to compensate individual investors with stock

loan lottery tickets than with stock loan fees because individual investors with prospect

theory preferences overvalue participation in lotteries. Investors participating in stock loan

lotteries can experience greater expected utility and earn higher expected returns, while

allowing other market participants to earn profits from securities lending and administering

the lottery itself. Two promising features of stock loan lotteries are that they provide the

greatest utility to the poorest investors and that the benefits increase is a model with

market frictions. These results suggest the potential for stock loan lotteries to improve the

performance and welfare of individual investors.
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The Barberis and Xiong (2009) model estimates expected utility over a one-year horizon. In

reality, many investors have financial goals that span a much longer horizon. To the extent

that investors care about their children or heirs, a recursive argument suggests investors

optimize over an infinite time horizon. Barberis and Xiong (2012) and Henderson (2012)

consider the implications of realization utility in an infinite-horizon model framework.

Evaluating the implications of introducing stock loan lotteries to one of these infinite-

horizon models has the potential to yield more interesting insights about the potential for

this financial innovation.
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Table 1: Parameter Values This table lists the important parameters, symbols, and calibrated
values for the Barberis and Xiong (2009) two-period model of realization utility. The investor has
W0 in wealth at t = 0. He allocates his wealth between the risk-free asset, which has a normalized
gross return, Rf = 1, and a risky asset, with annualized mean return µ and annualized standard
deviation σ. The risky asset return in each period has a binomial distribution with an equal
probability of Ru return in the up state and Rd return in the down state, where Ru and Rd are
chosen to match µ and σ. The investor chooses x0, the t = 0 risky asset allocation, xu, the t = 1
risky asset allocation following the up state, and xd, the risky asset allocation following the down
state. The investor maximizes E0(v), the current expected value at t = 1 and t = 2, and v() is the
Tversky and Kahneman (1992) value function applied to realized gains and losses.

Parameter Symbol Value(s)
Initial Wealth W0 40
Risky Asset: Initial Price P0 40
Risky Asset: Annualized Mean Return µ 1.05-1.15
Risky Asset: Annualized SD Return σ 0.3
Value Function: Concavity α 0.88
Value Function: Convexity β 0.88
Value Function: Sensitivity λ 2.25
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Table 2: Optimal Allocations in the Baseline Model For different values of µ, the annualized
expected gross return of the risky asset, this table lists the investor’s optimal allocations and best
outcome in the baseline Barberis and Xiong (2009) two-period model of realization utility. In all
cases, σ, the annualized standard deviation of risky asset returns, is 0.3. Table 1 lists and describes
the other important model parameters. The model assumes that there are two periods in a year,
and the gross one-period return of the risky asset is modeled as following a binomial distribution
with equal probabilities of realizing a return of Ru in the up state and Rd in the down state. The
choice variables are the risky asset allocations at t = 0 (x0) and the risky asset allocations at t = 1
following the realization of the up (xu) or down (xd) states. E0(v) is expected t = 0 cumulative
prospect theory utility. The investor experiences utility at t = 1 and t = 2 if he realizes gains
or losses, and the bursts of future prospect theory utility are not discounted by time. The value
function for prospect theory utility uses the functional form and parameter values in Tversky and
Kahneman (1992).

µ Ru Rd x∗0 x∗u x∗d E∗
0 (v)

1.05 1.230 0.820 0 0 0 0
1.06 1.234 0.826 0 0 0 0
1.07 1.238 0.831 0 0 0 0
1.08 1.241 0.837 0 0 0 0
1.09 1.245 0.843 3.4 2.6 3.4 0.01
1.10 1.249 0.848 3.6 2.8 3.6 1.09
1.11 1.253 0.854 3.7 3.0 3.7 2.22
1.12 1.257 0.860 3.8 5.4 3.8 3.66
1.13 1.261 0.865 4.0 6.0 4.0 5.29
1.14 1.265 0.871 4.1 6.6 4.1 7.01
1.15 1.269 0.876 4.2 7.2 4.4 8.95
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Table 3: Optimal Allocations in the Model with Stock Loan Fees For different values of
µ, the annualized expected gross return of the risky asset, this table lists the investor’s optimal
allocations and best outcome in various two-period models of realization utility. The left panel
shows results from the baseline (B) model. The choice variables are the risky asset allocations at
t = 0 (x0) and the risky asset allocations at t = 1 following the realization of the up (xu) or down
(xd) states. E0(v) is the expected t = 0 cumulative prospect theory utility the investor experiences
at t = 1 and t = 2 if he realizes gains or losses, and the bursts of prospect theory utility are not
discounted by time. The value function for prospect theory utility uses the functional form and
parameter values in Tversky and Kahneman (1992). The center and right panels show results from
models with stock loan fees (F). The investor is not allowed to execute closing trades at t = 1. The
investor receives a lending fee of f at t = 2 for allowing the exchange to lend shares between t = 0
and t = 2. The center panel shows the investor’s optimal allocation and best outcome when f is
five basis points. The right panel shows the investor’s optimal allocation and best outcome when f
is 50 basis points. The asterisks denote cases in which the investor’s maximum expected utility in
the model with stock loan fees is greater than the investor’s maximum utility in the baseline model.

Model B F(5) F(50)
µ x∗0 x∗u x∗d E∗

0 (v) x∗0 x∗u x∗d E∗
0 (v) x∗0 x∗u x∗d E∗

0 (v)
1.05 0 0 0 0 0 0 0 0 0 0 0 0
1.06 0 0 0 0 0 0 0 0 0 0 0 0
1.07 0 0 0 0 0 0 0 0 0 0 0 0
1.08 0 0 0 0 0 0 0 0 0 0 0 0
1.09 3.4 2.6 3.4 0.01 0 0 0 0 3.5 4.2 3.5 *0.22
1.10 3.6 2.8 3.6 1.09 3.6 4.6 3.6 0.93 3.6 4.7 3.6 *1.48
1.11 3.7 3.0 3.7 2.22 3.7 5.0 3.7 *2.27 3.8 5.2 3.8 *2.87
1.12 3.8 5.4 3.8 3.66 3.8 5.5 3.8 *3.75 3.9 5.7 3.9 *4.39
1.13 4.0 6.0 4.0 5.29 4.0 6.0 4.0 *5.37 4.1 6.2 4.1 *6.07
1.14 4.1 6.6 4.1 7.01 4.1 6.6 4.1 *7.16 4.2 6.9 4.2 *7.92
1.15 4.2 7.2 4.4 8.95 4.3 7.4 4.3 *9.16 4.4 7.6 4.4 *9.99
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Table 4: Best Outcomes in the Model with Stock Loan Lotteries For different values of µ,
the annualized expected gross return of the risky asset, this table lists the investor’s best outcome
in various two-period models of realization utility with stock loan lotteries. The choice variables
are the risky asset allocations at t = 0 (x0) and the risky asset allocations at t = 1 following the
realization of the up (xu) or down (xd) states. The investor is not allowed to sell any risky-asset
holdings at t = 1. The values in the table are E∗

0 (v), the expected t = 0 cumulative prospect theory
utility the investor experiences at t = 1 and t = 2 if he realizes gains or losses, and the bursts of
prospect theory utility are not discounted by time. The value function for prospect theory utility
uses the functional form and parameter values in Tversky and Kahneman (1992). The investor
receives a fee of f for allowing the exchange to lend shares between t = 0 and t = 2. The fee is
pooled into a lottery, and the investor has probability p of winning the lottery. In the left panel,
there is a single lottery at t = 2 where the investor has probability p of winning f ∗P0 ∗x0/p. In the
right panel, there are lotteries at t = 1 and t = 2 and in each lottery, the investor has probability p
of winning 0.5∗f ∗P0 ∗x0/p. The asterisks denote cases in which the investor’s maximum expected
utility in the model with stock loan lotteries is greater than the investor’s maximum utility in the
baseline model.

p 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
f (BPs) 5 5 50 50 5 5 50 50
Model L(2) L(2) L(2) L(2) L(1,2) L(1,2) L(1,2) L(1,2)
µ = 1.05 0 0 0 0 0 0 0 0
µ = 1.06 0 0 0 0 0 0 0 0
µ = 1.07 0 0 0 0 0 0 0 0
µ = 1.08 0 0 0 0 0 0 0 0
µ = 1.09 0 0 *0.13 *0.20 0 0 *0.14 *0.22
µ = 1.10 0.93 0.93 *1.36 *1.44 0.93 0.94 *1.38 *1.46
µ = 1.11 *2.27 *2.27 *2.71 *2.80 *2.27 *2.28 *2.74 *2.82
µ = 1.12 *3.74 *3.74 *4.19 *4.28 *3.74 *3.75 *4.22 *4.31
µ = 1.13 *5.36 *5.36 *5.82 *5.92 *5.36 *5.37 *5.86 *5.95
µ = 1.14 *7.15 *7.15 *7.63 *7.73 *7.15 *7.16 *7.67 *7.76
µ = 1.15 *9.13 *9.14 *9.63 *9.74 *9.13 *9.15 *9.67 *9.77

36



Table 5: Best Outcomes: Stock Loan Lotteries with Decision Weights For different
values of µ, the annualized expected gross return of the risky asset, this table lists the investor’s
best outcome in various two-period models of realization utility. Specification 1 is the baseline
model in Barberis and Xiong (2009). The choice variables are the risky asset allocations at t = 0
(x0) and the risky asset allocations at t = 1 following an up (xu) or down (xd) return in the first
period. Specifications 2 and 3 are models where the investor chooses a single risky asset allocation
at t = 0 (x0) and is not allowed to trade shares at t = 1. The investor receives a fee of f for allowing
the exchange to lend shares between t = 0 and t = 2. Specifications 4 through 11 are models where
the stock loan fee is pooled into a lottery, and the investor has probability p of winning the lottery.
In specifications 4 through 7, there is a single lottery (L) at t = 2 where the investor has probability
p of winning f ∗P0∗x0/p. In specifications 8 through 11, there are lotteries at t = 1 and t = 2 and in
each lottery, the investor has probability p of winning 0.5∗f ∗P0 ∗x0/p. The values in the table are
E0(v), the expected t = 0 cumulative prospect theory utility the investor experiences at t = 1 and
t = 2 if he realizes gains or losses, and the bursts of prospect theory utility are not discounted by
time. The value function for prospect theory utility uses the functional form and parameter values
in Tversky and Kahneman (1992). In the top panel, the investor maximizes expected prospect
theory utility using objective probabilities. In the bottom panel, the investor maximizes prospect
theory utility using decision weights with the functional form and parameter values in Tversky and
Kahneman (1992).

1 2 3 4 5 6 7 8 9 10 11
p 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
f (BPs) 5 50 5 5 50 50 5 5 50 50
Model B F(5) F(50) L(2) L(2) L(2) L(2) L(1,2) L(1,2) L(1,2) L(1,2)
µ = 1.05 0 0 0 0 0 0 0 0 0 0 0
µ = 1.06 0 0 0 0 0 0 0 0 0 0 0
µ = 1.07 0 0 0 0 0 0 0 0 0 0 0
µ = 1.08 0 0 0 0 0 0 0 0 0 0 0
µ = 1.09 0.01 0 0.22 0 0 0.13 0.20 0 0 0.14 0.22
µ = 1.10 1.09 0.93 1.48 0.93 0.93 1.36 1.44 0.93 0.94 1.38 1.46
µ = 1.11 2.22 2.27 2.87 2.27 2.27 2.71 2.80 2.27 2.28 2.74 2.82
µ = 1.12 3.66 3.75 4.39 3.74 3.74 4.19 4.28 3.74 3.75 4.22 4.31
µ = 1.13 5.29 5.37 6.07 5.36 5.36 5.82 5.92 5.36 5.37 5.86 5.95
µ = 1.14 7.01 7.16 7.92 7.15 7.15 7.63 7.73 7.15 7.16 7.67 7.76
µ = 1.15 8.95 9.16 9.99 9.13 9.14 9.63 9.74 9.13 9.15 9.67 9.77
µ = 1.05 0 0 0 0 0 0 0 0 0 0 0
µ = 1.06 0 0 0 0 0 0 0 0 0 0.40 0
µ = 1.07 0 0 0 0 0 1.11 0 0 0 1.84 0.55
µ = 1.08 0 0 0 0 0 2.50 0.77 0 0.49 3.36 2.51
µ = 1.09 0 0 0.09 0.41 0.82 4.01 2.48 1.04 2.57 5.01 4.65
µ = 1.10 1.11 0.92 1.56 1.96 2.63 5.65 4.34 2.71 4.83 6.81 6.97
µ = 1.11 2.43 2.48 3.17 3.66 4.61 7.44 6.36 4.54 7.30 8.77 9.51
µ = 1.12 4.08 4.20 4.94 5.52 6.77 9.40 8.59 6.55 10.02 10.93 12.32
µ = 1.13 5.92 6.08 6.90 7.57 9.16 11.56 11.03 8.76 13.00 13.30 15.41
µ = 1.14 8.01 8.17 9.06 9.84 11.82 13.89 13.74 11.21 16.30 15.89 18.67
µ = 1.15 10.34 10.50 11.50 12.34 14.71 16.56 16.74 13.92 19.97 18.76 22.45

37



Figure 1: Potential Utility Gains from Lottery Payoffs This figure presents the potential
utility gains from providing prospect theory investors with lottery payoffs. Tversky and Kahneman
(1992) estimate the weighting function for nonnegative gambles as a two-part power function:

w+(p) = pγ

(pγ+(1−p)γ)1/γ
, γ = 0.61. If an investor with cumulative prospect theory preferences

receives a certain gain of one dollar, his utility is v(1) = 10.88 = 1, where v() indicates the Tversky
and Kahneman (1992) value function. On the other hand, suppose the investor receives a free lottery
ticket with an expected payoff of one dollar. This lottery ticket can be written as a Kahneman and
Tversky (1979) gamble (1/p, p; 0, 1−p) with expected utility E0(v|p) = w+(p)∗v(1/p). The dotted
line shows the expected utility as a function of p. For values of p such that E0(v|p) > 1, the investor
prefers the lottery payout to a sure gain.
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Figure 2: Conditions for Welfare Gains This figure shows conditions in which introducing
stock loan fees or stock loan lotteries produces unconditional gains in investor welfare. In any model,
an investor chooses allocations to maximize prospect theory utility. An investor has unconditionally
greater welfare if his allocations in one model produce higher expected utility and higher expected
wealth than his allocations in another model. For all points above the dotted curve, the investor
has unconditionally greater welfare in the model with stock loan fees than in the baseline model
of realization utility. For all points above the solid line, the investor has unconditionally greater
welfare in the model with stock loan lotteries than in the baseline model of realization utility. In
the model with stock loan lotteries, there is a single lottery at t = 2 with a probability p = 0.1 of
winning the lottery. The area between the curves are points in (µ, f) space in which introducing
stock loan lotteries leads to unconditional improvements in investor welfare and introducing stock
loan fees does not.
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Figure 3: Regressive Features of Stock Loan Lotteries This figure shows how introducing
stock loan lotteries is regressive in that it provides disproportionate benefits to poor investors. In a
stock loan marketplace where there is a single winner of a single lottery, the probability of winning
the lottery is identical to the investor’s wealth share. This figure shows how a standardized measure
of utility, E[U(Wi)]/Wi, varies by the investor’s wealth share, in four different two-period models
of realization utility. The solid lines show standardized utility for models with a single stock loan
lottery at t = 2 and stock loan fees of five and 50 basis points. The dotted lines show standardized
utility for models with no stock loan lotteries and stock loan fees of five and 50 basis points. For
all models, the annualized expected gross return of the risky asset (µ), is 1.12.
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Figure 4: Stock Loan Lotteries with Transactions Costs and Leverage Constraints This
figure shows how the conditions for unconditional improvement in welfare change after introducing
transactions costs and leverage constraints. An investor has unconditionally greater welfare if the
utility-maximizing allocation provides strictly higher expected utility and strictly higher expected
wealth. There are three two-period models of realization utility: the baseline Barberis and Xiong
(2009) model, a model with fixed stock loan fees, and a model with a single stock loan lottery at t = 2
with probability p = 0.1 of winning the lottery. For different values of µ, the annualized expected
gross return of the risky asset, I solve all three models in a perfect market as well as a market
with frictions. The market frictions include 1.3% round-trip transactions costs and a maximum
leverage ratio of 2. For each value of µ, in each environment, I calculate fF and fL, the minimum
fee required to provide investors in the fee and lottery models unconditionally greater welfare than
in the baseline model. For each µ, the potential for welfare improvement by introducing stock loan
lotteries is max[fF (µ)− fL(µ), 0]. The solid line shows the potential for welfare improvement with
market frictions, while the dotted line shows the potential for welfare improvement with perfect
markets.
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Figure 5: Stock Loan Lotteries as Derivative Securities This figure shows how lottery tickets
could be structured as derivative securities. For a diversified equity index, a “Pennies Series X”
derivative has a payoff of 1 if the pennies digit of the closing price of the index on a particular day
is X. This histogram shows that there is no evidence of clustering in the pennies digit of major
diversified equity indices. The black bars show the frequency of each of the pennies digits in the
closing prices of the S&P 500 index between December 30, 1927 and April 21, 2017. The S&P
500 index is a capitalization-weighted index of 500 diversified large US public equities. The gray
bars show the frequency of each of the pennies digits in the closing prices of the Nikkei 225 index
between January 5, 1970 and April 21, 2017. The Nikkei 225 index is a price-weighted index of 225
diversified large Japanese public equities. Daily closing prices are from Bloomberg.
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Appendix A: Mathematical Properties of the Value Function

The investor maximizes E0v(x), where v(x) has the functional form:

{
v(x) = xα x ≥ 0, 0 < α < 1

v(x) = −λ(−x)α x < 0, 0 < α < 1, λ > 1

Suppose the investor accepts some gamble (G) with potential gains (g1, g2 . . . gm) and
potential losses (l1, l2 . . . lm). This implies:

E0v(x;G) =
∑m

i=1 p(gi)v(gi) +
∑n

j=1 p(lj)v(lj) > 0

Applying the functional form of the value function:

E0v(x;G) =
∑m

i=1 p(gi)(gi)
α − λ

∑n
j=1 p(lj)(−lj)α > 0

Consider a proportionately larger gamble (kG, k > 1). This gamble has expected value:

E0v(x; kG) =
∑m

i=1 p(gi)v(kgi) +
∑n

j=1 p(lj)v(klj)

Applying the functional form of the value equation to the larger gamble:

E0v(x; kG) = kα
∑m

i=1 p(gi)(gi)
α − λkα

∑n
j=1 p(lj)(−lj)α

E0v(x; kG) = kα[
∑m

i=1 p(gi)(gi)
α − λ

∑n
j=1 p(lj)(−lj)α] = kαE0v(x;G)

Since k > 1, 0 < α < 1, and E0v(x;G) > 0,

E0v(x;Kg) > E0v(x; g) > 0

So given that the investor accepts G, he always prefers kG. Therefore, an investor who
chooses a positive risky asset allocation always chooses to exhaust the nonnegative wealth
constraint.

QED
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