Financial volatility, currency diversification and banking stability

Justine Pedrono

1 CEPII, Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, AMSE

August 25, 2017

International Workshop on Financial System Architecture and Stability
Motivation

From the literature:

Evans and McMillan [2009], Rey [2013], Miranda-Agrippino and Rey [2015], Ivashina et al. [2015], Pedrono and Violon [2017]

▷ European banks: a transatlantic asymmetry in international banking (Baba et al. [2009], McGuire and Von Peter [2012])

▷ EA global banks exposed to the global financial cycle:
 ▷ Co-movements between assets \{C, C^*\}
 ▷ Major influence of US monetary policy on credit conditions worldwide \{L, L^*\}

▷ Regarding exchange rate, assets and liabilities: domestic currency appreciation with positive shock on domestic interest rate.
 Engel [1996], Kearns and Manners [2006], Ehrmann et al. [2011]

▷ \{C, C^*, L, L^*, S\} within EA banks’ balance sheet are linked all together.

Aim of this paper:

▷ Link the bank’s exposure to the global financial cycle to the banking volatility
Illustration

(a) International stock market indices

(b) Shadow short rates (SSR), daily returns

(c) Exchange rate

Figure: Financial markets. Sources: Bloomberg, The Reserve Bank of New Zealand.
This paper

Theoretical model:
- Stochastic processes to define assets, liabilities and foreign exchange rate marginal variation
- Equity returns:
 - A residual of total asset and liability marginal variations
- Volatility of equity:
 - Leverage and variance covariance matrix between \{C, C^*, L, L^*, S\}

Data and empirical application:
- Daily data on:
 - International stock market indices
 - US and EA Shadow Short Rate
 - Foreign exchange rate
- Bi-variate DCC GARCH:
 - Conditional variances and correlations
 - Estimation of efficient currency diversification

Key ingredients:
- Differentiating each source of risk within global bank’s volatility
- Identification of the global financial cycle: conditional correlations
Equity

Total assets:

\[A = C + SC^* \quad \text{with} \quad \frac{C}{A} = (1 - \psi) ; \quad \frac{SC^*}{A} = \psi \]

Total liabilities:

\[D = L + SL^* \quad \text{with} \quad \frac{L}{D} = (1 - \lambda) ; \quad \frac{SL^*}{D} = \lambda \]

Bank’s equity is defined through \(E \) such that:

\[E = A - D \]

Bank’s leverage \(l \):

\[l = D/E \]

Following the Basel III framework, we assume that leverage is defined by authorities. Using definitions of \(l \) and \(E \), we obtain the bank’s equity SDE:

\[
d\tilde{E} = \frac{dE}{E} = (1 + l) \frac{dA}{A} - l \cdot \frac{dD}{D} \\
= (1 + l) \left((1 - \psi) d\tilde{C} + \psi (d\tilde{C}^* + d\tilde{S}) \right) - l \left((1 - \lambda) d\tilde{L} + \lambda (d\tilde{L}^* + d\tilde{S}) \right)
\]
Volatility of equity with currency diversification

Introducing 10 covariances \(\{\sigma_{CC^*}, \sigma_{LL^*}, \sigma_{LC}, \sigma_{L^*C^*}, \sigma_{L^*C}, \sigma_{SC}, \sigma_{SC^*}, \sigma_{SL^*}, \sigma_{SL}\} \)

Volatility of equity return:

\[
\text{Var} \left(\frac{d\tilde{E}}{dt} \right) = \sum \text{Var of each component of the BS} : \sigma^2_C \sigma^2_{C^*} \sigma^2_L \sigma^2_{L^*} \sigma^2_S \\
+ \text{The exposure to the global financial cycle : } \sigma_{CC^*}, \sigma_{LL^*} \\\n- \text{The Asset-Debt hedging strategy : } \sigma_{LC} \sigma_{L^*C^*} \sigma_{L^*C} \sigma_{LC^*} \\\n+/- \text{ The FX channel on converted returns and costs : } \sigma_{SC}, \sigma_{SC^*}, \sigma_{SL^*}, \sigma_{SL}
\]

"Efficient" share of foreign asset \(\hat{\psi} \): min. of banking volatility (similarly for \(\hat{\lambda} \))

\[
\hat{\psi} = + \text{ share of } C \text{ in asset-side risk} \\
+ \text{ risk reduction related to part of liability side being also in foreign currency} \\
+ \text{ share of } C^* \text{ risk that can be hedged with } L^* \\
+ \text{ share of } C^* \text{ risk that can be hedged with } L
\]
An application to the US and EA financial markets

Data

- C: log returns of the Eurostoxx50 index
- C^*: log returns of the S&P500 index
- L: EA SSR changes for EA monetary tightening
- L^*: US SSR changes for US monetary tightening
- S: the USD/EUR FX

Identifying variances of $\{C, C^*, L, L^*, S\}$ and correlations between the different components:

- 10 bivariate DCC GARCH(1,1) using daily data from 2000 to 2015

Compared to cointegration analysis:

- Capture the potential change in financial integration as mentioned by Evans and McMillan [2009].
Main results from DCC GARCH

- Identification of financial distress:
 - the subprime crisis (2008-2009)
 - global volatility surge in 2008

- Assets are more volatile
 - $\{\sigma_C, \sigma_C^*\} > \{\sigma_S\} > \{\sigma_L, \sigma_L^*\}$

- US Vs EA volatility
 - $\sigma_C > \sigma_C^*$ except for 2008
 - $\sigma_L > \sigma_L^*$ for 2000, 2003, 2009 and since 2011

- Confirm the global financial cycle:
 - $\{\rho_{CC^*}, \rho_{LL^*}\}$, all positive with some dynamics
 - $\{\rho_{LC}, \rho_{L^*C^*}, \rho_{L^*C}, \rho_{LC^*}\}$, all positive with dynamics

- Correlations regarding FX:
 - $\{\rho_{SC}, \rho_{SC^*}, \rho_{SL^*}, \rho_{SL}\}$: positive to negative dynamic depending on sub-period
Efficient diversification

2008: peak in vol. but large ρ_{LC} and ρ_{L*C*}, and FX compensation with $\rho_{SC} = -\rho_{SC*}$ and $\rho_{SL} = -\rho_{SL*}$:
- Currency diver. still stabilizing

2009-2012: large compensation effect with $\rho_{SC*} < 0$, plus $\rho_{LC*} > \rho_{L*C*}$:
- Currency mismatch is optimal

After 2012, $\rho_{LC} < \rho_{L*C}$ and ρ_{SC*} increases and becomes positive:
- Currency mismatch is absorbed

Figure: Efficient currency diversification of bank’s balance sheet (2000-2015): ψ and λ are defined as to minimize the volatility of bank’s equity.
⇒ Link the bank’s exposure to the global financial cycle to the banking stability.

▷ An application to the US and EA financial markets
 ▷ Identification of the global financial cycle
 ▷ Diversification reduces equity volatility even during large financial distresses such as 2008.

⇒ The currency dimension of banks’ balance sheet then offers an interesting potential regulatory tool to improve the resilience of banks:
 ▷ Possible to hedge FX risk completely.
 ▷ Possible to understand the consequences of banks’ external positions: currency mismatch may improve banking stability.
 ▷ Possible to improve stress test exercises by including FX adjustments.

⇒ Extension:
 ▷ Compared efficient diversification and observed diversification
 ▷ Explain differences in currency diversification
 ▷ Explain conditional correlations.
Equity return volatility

\[
\text{Var}\left(\frac{d\tilde{E}}{dt}\right) = \Sigma_{\text{ortho}}
\]

\[+
2(1 + l)^2 \psi(1 - \psi)\sigma_{CC^*} + \lambda(1 - \lambda)\sigma_{LL^*}
\]

\[\text{global financial cycle risk} + \text{global financial cycle risk}
\]

\[-2(1 + l)l \left[(1 - \psi)\left((1 - \lambda)\sigma_{LC} + \lambda\sigma_{L^*C}\right) + \psi\left(\lambda\sigma_{L^*C} + (1 - \lambda)\sigma_{LC^*}\right)\right]
\]

\[\text{A–D hedging strategies}
\]

\[+2(\psi + l(\psi - \lambda))(1 + l)\left[(1 - \psi)\sigma_{SC} + \psi\sigma_{SC^*}\right]
\]

\[\text{FX channel, asset}
\]

\[-2(\psi + l(\psi - \lambda))l \left[(1 - \lambda)\sigma_{SL} + \lambda\sigma_{SL^*}\right]
\]

\[\text{FX channel, liability}
\]

where:

\[
\Sigma_{\text{ortho}} = ((1 + l)(1 - \psi))^2 \sigma_C^2 + ((1 + l)\psi)^2 \sigma_{C^*}^2 + (\psi + l(\psi - \lambda))^2 \sigma_S^2 + (l(1 - \lambda))^2 \sigma_L^2 + (l\dot{\lambda})^2 \sigma_{L^*}^2
\]
Efficient asset diversification

\[\frac{\partial \Sigma_{global}^2}{\partial \psi} = 0 \mid \lambda \text{ constant} \]

\[\hat{\psi}_{global} = \frac{\sigma_C^2 - \sigma_{CC^*} - \sigma_{SC}}{\sigma_C^2 + \sigma_{C^*}^2 + \sigma_S^2 - 2 (\sigma_{CC^*} + \sigma_{SC} - \sigma_{SC^*})} \]

\[+ \lambda \left(\frac{l}{1 + l} \right) \frac{\sigma_S^2 + \sigma_{SC^*} - \sigma_{SC}}{\sigma_C^2 + \sigma_{C^*}^2 + \sigma_S^2 - 2 (\sigma_{CC^*} + \sigma_{SC} - \sigma_{SC^*})} \]

\[+ \lambda \left(\frac{l}{1 + l} \right) \frac{\sigma_{SL^*} + \sigma_{L^*C^*} - \sigma_{L^*C}}{\sigma_C^2 + \sigma_{C^*}^2 + \sigma_S^2 - 2 (\sigma_{CC^*} + \sigma_{SC} - \sigma_{SC^*})} \]

\[\text{share of } C^* \text{ risk that can be hedged with } L^* \]

\[+ (1 - \lambda) \left(\frac{l}{1 + l} \right) \frac{\sigma_{SL} + \sigma_{LC^*} - \sigma_{LC}}{\sigma_C^2 + \sigma_{C^*}^2 + \sigma_S^2 - 2 (\sigma_{CC^*} + \sigma_{SC} - \sigma_{SC^*})} \]

\[\text{share of } C^* \text{ risk that can be hedged with } L \]

(2)
Efficient liability diversification

Similarly for the "Efficient" share of foreign liability λ^*:

$$
\frac{\partial \Sigma^2_{global}}{\partial \lambda} = 0 \mid \psi \text{ constant}
$$

$$
\hat{\lambda}_{global} = \frac{\sigma_L^2 - \sigma_{LL^*} - \sigma_{SL}}{\sigma_L^2 + \sigma_{L^*}^2 + \sigma_S^2 - 2(\sigma_{LL^*} + \sigma_{SL} - \sigma_{SL^*})}
$$

$$
+ \psi \left(\frac{1 + l}{l} \right) \frac{\sigma_S^2 + \sigma_{SL^*} - \sigma_{SL}}{\sigma_L^2 + \sigma_{L^*}^2 + \sigma_S^2 - 2(\sigma_{LL^*} + \sigma_{SL} - \sigma_{SL^*})}
$$

$$
+ \psi \left(\frac{1 + l}{l} \right) \frac{\sigma_{L^*C^*} + \sigma_{SC^*} - \sigma_{LC^*}}{\sigma_L^2 + \sigma_{L^*}^2 + \sigma_S^2 - 2(\sigma_{LL^*} + \sigma_{SL} - \sigma_{SL^*})}
$$

share of L^* risk that can be hedged with L^*

$$
+ (1 - \psi) \left(\frac{1 + l}{l} \right) \frac{\sigma_{SC} + \sigma_{L^*C} - \sigma_{LC}}{\sigma_L^2 + \sigma_{L^*}^2 + \sigma_S^2 - 2(\sigma_{LL^*} + \sigma_{SL} - \sigma_{SL^*})}
$$

share of L^* risk that can be hedged with C

(3)
The FX channel

On the asset side

- Following empirical literature (Ehrmann et al. [2011]) : \(\sigma_{SC^*} > 0 \) and \(\sigma_{SC} < 0 \)

Assuming that \(\sigma_{SC} = -\sigma_{SC^*} \) and :

- \(\psi = 0.5 \) : FX channel=0

- \(\psi > 0.5 \) : a positive shock on \(\{r, r^*\} \) goes with a foreign currency appreciation
 - Converted asset returns increase, thus :
 - A relatively low \(\lambda \) increases \(\Sigma^2 \) (i.e when \(\frac{\psi}{\lambda} > \frac{l}{1+l} \)) : no compensation
 - A relatively large \(\lambda \) decreases \(\Sigma^2 \) (i.e when \(\frac{\psi}{\lambda} < \frac{l}{1+l} \)) : compensation

- \(\psi < 0.5 \) : a positive shock on \(\{r, r^*\} \) goes with a foreign currency depreciation
 - Converted asset returns decrease, thus :
 - A relatively low \(\lambda \) decreases \(\Sigma^2 \) (i.e when \(\frac{\psi}{\lambda} > \frac{l}{1+l} \)) : compensation
 - A relatively large \(\lambda \) increases \(\Sigma^2 \) (i.e when \(\frac{\psi}{\lambda} < \frac{l}{1+l} \)) : no compensation

- When \(\psi = \lambda = 0 \), or when \(\frac{\psi}{\lambda} = \frac{l}{1+l} \), FX channel=0
DCC GARCH

Two steps: 1) estimate the conditional volatility of each one of the two series \(\{i, j\}\) from univariate GARCH(1,1); 2) capture from the first step the dynamic correlation between the two series.

Suppose \(r_t\) a 2x1 vector of returns of 2 assets at time \(t\), \(H_t\) a 2x2 matrix of conditional variances of \(r_t\) at time \(t\) and \(z_t\) a 2x1 vector of iid errors such that \(E[z_t] = 0\) and \(E[z_t z_t^T] = I\). Then, univariate GARCH is such that:

\[
 r_t = H_t^{1/2} z_t
\]

Decomposing the covariance matrix \(H_t\) into conditional standard deviation \(D_t\) from univariate GARCH, and a correlation matrix \(R_t\) capturing the dynamic correlation \(\{i, j\}\), the DCC GARCH introduces the following extension:

\[
 H_t = D_t R_t D_t
\]

Where the varying conditional correlation matrix \(R_t\) is defined as:

\[
 R_t = (I \odot Q_t)^{-1/2} Q_t (I \odot Q_t)^{-1/2}
\]

\[
 Q_t = (1 - a - b) \bar{Q} + a \epsilon_t - 1 \epsilon_t - 1^T + b Q_{t-1}
\]

Therefore, the dynamic matrix process \(Q_t\) is a function of \(\bar{Q}\), the unconditional correlation matrix of the standardized errors \(\epsilon_t\). Our results suggest that all correlations are mean-reverting process where \((a + b) < 1\). Additionally, all Wald tests reject the null hypothesis where \(a = b = 0\): conditional correlations are dynamic.
Conditional variance

Identification of financial distress:
- 2001-2002: the bursting of the dotcom bubble
- 2008-2009: the subprime crisis
- 2008: peak in volatility

Assets are more volatile:
- $\{\sigma_C, \sigma_C^*\} > \{\sigma_S\} > \{\sigma_L, \sigma_L^*\}$

US Vs EA volatility:
- $\sigma_C > \sigma_C^*$ except for 2008
- $\sigma_L > \sigma_L^*$ for 2000, 2003, 2009 and since 2011
Conditional variance

<table>
<thead>
<tr>
<th></th>
<th>$\sigma^2_{C^*}$</th>
<th>σ^2_C</th>
<th>σ^2_S</th>
<th>$\sigma^2_{L^*}$</th>
<th>σ^2_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1.80e-04</td>
<td>2.12e-04</td>
<td>5.72e-05</td>
<td>2.47e-08</td>
<td>2.91e-08</td>
</tr>
<tr>
<td>2001</td>
<td>1.86e-04</td>
<td>2.81e-04</td>
<td>6.17e-05</td>
<td>1.14e-07</td>
<td>4.83e-08</td>
</tr>
<tr>
<td>2002</td>
<td>1.86e-04</td>
<td>2.81e-04</td>
<td>6.17e-05</td>
<td>1.14e-07</td>
<td>4.83e-08</td>
</tr>
<tr>
<td>2003</td>
<td>1.24e-04</td>
<td>3.11e-04</td>
<td>4.53e-05</td>
<td>3.32e-08</td>
<td>3.61e-08</td>
</tr>
<tr>
<td>2004</td>
<td>6.07e-05</td>
<td>9.75e-05</td>
<td>4.75e-05</td>
<td>2.87e-08</td>
<td>2.66e-08</td>
</tr>
<tr>
<td>2005</td>
<td>5.52e-05</td>
<td>7.09e-05</td>
<td>3.63e-05</td>
<td>2.23e-08</td>
<td>1.83e-08</td>
</tr>
<tr>
<td>2006</td>
<td>5.27e-05</td>
<td>1.03e-04</td>
<td>2.73e-05</td>
<td>1.87e-08</td>
<td>1.84e-08</td>
</tr>
<tr>
<td>2007</td>
<td>1.05e-04</td>
<td>1.17e-04</td>
<td>1.67e-05</td>
<td>3.43e-08</td>
<td>2.44e-08</td>
</tr>
<tr>
<td>2008</td>
<td>5.84e-04</td>
<td>5.60e-04</td>
<td>6.22e-05</td>
<td>9.43e-08</td>
<td>8.33e-08</td>
</tr>
<tr>
<td>2009</td>
<td>2.98e-04</td>
<td>3.34e-04</td>
<td>7.61e-05</td>
<td>3.74e-08</td>
<td>4.59e-08</td>
</tr>
<tr>
<td>2010</td>
<td>1.30e-04</td>
<td>2.30e-04</td>
<td>5.59e-05</td>
<td>3.93e-08</td>
<td>2.76e-08</td>
</tr>
<tr>
<td>2011</td>
<td>2.03e-04</td>
<td>3.28e-04</td>
<td>5.77e-05</td>
<td>4.05e-08</td>
<td>6.08e-08</td>
</tr>
<tr>
<td>2012</td>
<td>8.13e-05</td>
<td>1.95e-04</td>
<td>3.38e-05</td>
<td>2.25e-08</td>
<td>3.54e-08</td>
</tr>
<tr>
<td>2013</td>
<td>6.29e-05</td>
<td>1.17e-04</td>
<td>2.47e-05</td>
<td>3.87e-08</td>
<td>4.92e-08</td>
</tr>
<tr>
<td>2014</td>
<td>6.14e-05</td>
<td>1.29e-04</td>
<td>1.70e-05</td>
<td>2.43e-08</td>
<td>2.71e-08</td>
</tr>
<tr>
<td>2015</td>
<td>1.01e-04</td>
<td>2.24e-04</td>
<td>5.77e-05</td>
<td>2.23e-08</td>
<td>8.39e-08</td>
</tr>
</tbody>
</table>

Table: Conditional variances. S, C, C^*, L and L^* refer to the exchange rate, the eurostoxx 50 index, the S&P500 index, the euro Shadow Short Rate and the US Shadow Short Rate respectively.
Conditional correlations: assets and liabilities
Conditional correlations: foreign exchange rate

![Correlation graphs for US SSR, EA SSR, Eurostoxx50, and SP500 with FX rates from 2000 to 2015.](image-url)
Conditional correlations:

<table>
<thead>
<tr>
<th>Year</th>
<th>ρ_{LL}^*</th>
<th>ρ_{CC}^*</th>
<th>ρ_{LC}</th>
<th>ρ_{LC^*}</th>
<th>ρ_{L^*C}</th>
<th>ρ_{SL}</th>
<th>ρ_{SL^*}</th>
<th>ρ_{SC}</th>
<th>ρ_{SC^*}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0.44</td>
<td>0.52</td>
<td>0.20</td>
<td>0.20</td>
<td>0.04</td>
<td>0.14</td>
<td>0.15</td>
<td>0.21</td>
<td>0.00</td>
</tr>
<tr>
<td>2001</td>
<td>0.48</td>
<td>0.58</td>
<td>0.33</td>
<td>0.28</td>
<td>0.26</td>
<td>0.25</td>
<td>0.27</td>
<td>0.28</td>
<td>0.20</td>
</tr>
<tr>
<td>2002</td>
<td>0.43</td>
<td>0.60</td>
<td>0.49</td>
<td>0.39</td>
<td>0.32</td>
<td>0.27</td>
<td>0.26</td>
<td>0.14</td>
<td>0.22</td>
</tr>
<tr>
<td>2003</td>
<td>0.45</td>
<td>0.60</td>
<td>0.44</td>
<td>0.30</td>
<td>0.32</td>
<td>0.28</td>
<td>0.36</td>
<td>0.40</td>
<td>0.41</td>
</tr>
<tr>
<td>2004</td>
<td>0.50</td>
<td>0.57</td>
<td>0.25</td>
<td>0.20</td>
<td>0.13</td>
<td>0.22</td>
<td>0.41</td>
<td>0.37</td>
<td>0.14</td>
</tr>
<tr>
<td>2005</td>
<td>0.43</td>
<td>0.58</td>
<td>0.20</td>
<td>0.20</td>
<td>0.14</td>
<td>0.21</td>
<td>0.18</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td>2006</td>
<td>0.47</td>
<td>0.62</td>
<td>0.23</td>
<td>0.14</td>
<td>0.11</td>
<td>0.16</td>
<td>0.32</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>2007</td>
<td>0.51</td>
<td>0.61</td>
<td>0.40</td>
<td>0.35</td>
<td>0.27</td>
<td>0.28</td>
<td>0.22</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>2008</td>
<td>0.50</td>
<td>0.59</td>
<td>0.45</td>
<td>0.40</td>
<td>0.37</td>
<td>0.33</td>
<td>0.13</td>
<td>-0.16</td>
<td>-0.01</td>
</tr>
<tr>
<td>2009</td>
<td>0.50</td>
<td>0.64</td>
<td>0.34</td>
<td>0.26</td>
<td>0.28</td>
<td>0.25</td>
<td>0.08</td>
<td>-0.07</td>
<td>-0.35</td>
</tr>
<tr>
<td>2010</td>
<td>0.44</td>
<td>0.64</td>
<td>0.36</td>
<td>0.27</td>
<td>0.33</td>
<td>0.24</td>
<td>0.04</td>
<td>-0.27</td>
<td>-0.36</td>
</tr>
<tr>
<td>2011</td>
<td>0.42</td>
<td>0.65</td>
<td>0.45</td>
<td>0.34</td>
<td>0.37</td>
<td>0.30</td>
<td>-0.06</td>
<td>-0.42</td>
<td>-0.44</td>
</tr>
<tr>
<td>2012</td>
<td>0.43</td>
<td>0.63</td>
<td>0.37</td>
<td>0.28</td>
<td>0.31</td>
<td>0.26</td>
<td>-0.07</td>
<td>-0.35</td>
<td>-0.49</td>
</tr>
<tr>
<td>2013</td>
<td>0.47</td>
<td>0.62</td>
<td>0.21</td>
<td>0.19</td>
<td>0.17</td>
<td>0.18</td>
<td>0.09</td>
<td>-0.17</td>
<td>-0.09</td>
</tr>
<tr>
<td>2014</td>
<td>0.36</td>
<td>0.62</td>
<td>0.20</td>
<td>0.26</td>
<td>0.20</td>
<td>0.22</td>
<td>0.23</td>
<td>-0.12</td>
<td>0.17</td>
</tr>
<tr>
<td>2015</td>
<td>0.31</td>
<td>0.59</td>
<td>0.15</td>
<td>0.26</td>
<td>0.13</td>
<td>0.22</td>
<td>0.30</td>
<td>-0.10</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table: Conditional correlations. S, C, C^*, L and L^* refer to the exchange rate, the eurostoxx 50 index, the S&P500 index, the euro Shadow Short Rate and the US Shadow Short Rate respectively.

