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1 Introduction

The recent banking crisis highlights the importance of liquidity risk. During the crisis,

market liquidity evaporated, and asset prices dropped sharply. At the same time, as funding

liquidity dried up, even well-capitalized banks found it difficult to roll over their short-term

debt and had to resort to central banks.

Market liquidity and funding liquidity are closely related. It is widely acknowledged that

market illiquidity contributes to funding illiquidity. As market liquidity diminishes, potential

fire-sale losses from early liquidation make creditors panic. As a result, the creditors can stop

rolling over their short-term debt and thus deprive a healthy financial institution of its funding.

Such funding liquidity risk has been emphasized by, among others, Morris and Shin (2000),

Rochet and Vives (2004), and Goldstein and Pauzner (2005). However, the literature has so far

ignored the fact that funding illiquidity also feeds market illiquidity: bank runs can lead to fire

sales, depress asset prices, and in extreme cases, freeze up markets.1

The current paper fills this gap by presenting a model where asset fire sales and bank runs

mutually reinforce each other. The feedback is driven by a lack of information. In particular,

a bank that fails because of illiquidity cannot be distinguished from one that fails because of

fundamental insolvency.2 We incorporate this informational friction into a global-games-based

bank run model and endogenize fire-sale prices: asset prices are based on the micro-foundation

of information asymmetry. As a defining feature that distinguishes the current model from the

literature, we have market participants’ beliefs, asset prices, and bank runs, all endogenous

and jointly determined in a rational expectations equilibrium. We prove that an equilibrium

exists and is unique. We also extend the theoretical framework to model financial contagion.

We show that contagion can be driven by creditors’ beliefs and emerge as a result of multiple

equilibria.

The intuition behind our model is as follows. When asset buyers cannot distinguish assets

sold by an illiquid bank from those sold by an insolvent one, their offered price will be distorted

downwards. As a result, the illiquid bank cannot recoup a fair value for its assets on sale. This

friction leads to a vicious circle. To begin with, low asset prices fuel bank runs: expecting

1For example, Acharya and Roubini (2009) documented how the early liquidation of two highly levered Bear
Stearns-managed hedge funds stressed the price of asset-backed securities.

2This idea is widely recognized in practice as well as in the literature. In fact, it is considered the main
challenge for central banks to perform as lenders of last resort. See, for example, Freixas, Rochet, and Parigi
(2004).
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other creditors’ early withdrawals to cause fire-sale losses, a creditor has an incentive to join

the run. However, it is the run and early liquidation, which pools illiquid banks with insolvent

ones, that leads to the drop in asset price in the first place. In this sense, creditors’ pessimistic

expectations realize themselves. With one more ingredient—an aggregate state — we show that

financial contagion can happen in a similar manner. As uninformed asset buyers form rational

expectations, they revise their beliefs about the aggregate state downwards if they observe any

bank runs. Their deteriorating expectations reduce the asset price that they are willing to pay,

which, in turn, precipitates contagious runs to other banks.

Our model delivers three policy insights. First, while our paper confirms that well-capitalized

banks have larger buffers against fire-sale losses, our analysis also reveals that once asset prices

are endogenous, increasing capital can also have unintended consequences for liquidity via

buyers’ beliefs. In particular, buyers’ posterior beliefs about a bank’s asset value will dete-

riorate when a run happens to the bank, and the deterioration is particularly strong when the

bank maintains a high capital ratio. Because well-capitalized banks can sustain large losses, if

a run happens to such a bank, the bank’s losses must be unusually high. Therefore, given that

a bank faces a run, buyers’ valuation of its assets decreases in its capital level. Asset buyers’

low willingness to pay, however, makes the run more likely to happen in the first place. In the

extreme, the model predicts that increasing capital does not reduce bank funding liquidity risk

at all.

Second, our model highlights the effectiveness of asset purchase programs in promoting

financial stability. We find that even when regulators have the same information as other market

participants, it is still possible to design an asset purchase program that improves financial

stability at no social cost. In such an asset purchase program, the regulator pre-commits to

buy bank assets for a price at which she expects to break even. This precommitment breaks

the vicious cycle fueled by beliefs. It can thus be seen that the typical asset buyers’ lack

of commitment is at the very root of financial fragility. In particular, typical asset buyers

behave according to their rational beliefs, and aim to avoid losses in every perceived state.

This generates a vicious cycle because buyers’ pessimistic beliefs can lead to negative market

outcomes (e.g., more bank runs) which in turn justify themselves. A regulator with commitment

power, on the other hand, avoids such pessimistic belief updating. This allows her to promote

financial stability while breaking even from an ex-ante perspective.
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Finally, when the regulator has better information than typical market participants, the

model highlights a trade-off for regulatory disclosure policies.3 Our paper shows that regu-

latory disclosures are a double-edged sword. If the disclosed information reassures market

participants, banks can be saved from illiquidity. However, if the disclosure adds to pessimistic

market beliefs, the disclosure itself can lead to financial fragility. This is because once the

severity of the problem is acknowledged, market participants will further revise downwards

their expected performance of all banks, leading to greater fire-sale losses and triggering illiq-

uidity, even for healthy banks.

Our theoretical framework is related to the literature on bank runs and financial contagion.

Since Diamond and Dybvig (1983), the literature has been concerned with the financial fragility

caused by bank runs.4 Following their seminal contribution, there was a debate as to whether

bank runs are due to pure panic or unfavorable information on banks’ fundamentals.5 The gap

between the panic and fundamental view was bridged by the application of global games. Using

the concept, papers such as Morris and Shin (2000), Rochet and Vives (2004) and Goldstein and

Pauzner (2005) refined the multiple equilibria in Diamond and Dybvig (1983) and emphasized

the role of fire-sale losses in causing bank runs. That is, to prevent runs, an extra buffer of

cash flow is needed against fire-sale losses. A bank that fails to provide the extra buffer will

become “solvent but illiquid”—being able to repay its debt in full if no run happens, but to

be liquidated early if its creditors do not roll over their debt. But a limitation of the existing

models is that they build on the simplifying assumption of exogenous fire-sale losses,6 so that

the models implicitly exclude the possibility for bank runs to affect asset prices. In contrast, the

current paper explores the relationship: when it is difficult to distinguish illiquid banks from

insolvent ones, the adverse selection causes low asset prices and fire-sale losses.7

A natural corollary of assuming an exogenous fire-sale loss is that funding liquidity risk

will be always reduced by higher capital, because the market value of capital adds to the buffer

3For instance, whether or not regulators should disclose information concerning their assistance programs.
4It should be mentioned that some papers also consider the positive role of bank run as disciplinary device:

Calomiris and Kahn (1991) and Diamond and Rajan (2001).
5Papers emphasizing banks’ weak fundamentals in causing runs include Chari and Jagannathan (1988), Jack-

lin and Bhattacharya (1988) and Allen and Gale (1998). Friedman and Schwartz (1963) provide empirical support
for the panic view. Contradicting evidence in favor of the fundamental view is present in Gorton (1988), Calomiris
and Gorton (1991) and Calomiris and Mason (2003).

6For example, Rochet and Vives (2004) assume an exogenous fire-sale discount and Morris and Shin (2009)
assume an exogenous haircut.

7While the current paper justifies the low asset price by informational frictions, low asset prices can also be
explained by fixed short-term cash supply—the cash-in-the-market argument pioneered by Shleifer and Vishny
(1992) and Allen and Gale (1994).
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against fire-sale losses. With endogenous fire-sale prices, the current paper takes a broader

view: while acknowledging the buffer effect of capital, we point out that greater capital can

also contribute to illiquidity via buyers’ pessimistic inference.

In terms of predicting an interaction between market liquidity and funding liquidity, our

model is most closely related to Brunnermeier and Pedersen (2009), who emphasize a haircut

constraint on a speculator who supplies liquidity to a financial market with limited participation.

In their model, asset prices are volatile because there is an asynchronization between selling

and buying. This paper differs from theirs in two aspects. First, the funding liquidity risk arises

as a result of equilibrium bank runs caused by the wholesale creditors’ coordination failures.

Second, this paper emphasizes the asymmetric information on asset qualities, and how such

adverse selection causes asset illiquidity.8 .

In our paper, contagion is generated not only by the actual realization of a common risk fac-

tor but also by its perception: a bank failure casts shadow on the perceived common risk factor;

and the resulting negative informational externalities affect all the other banks. This observa-

tion is mostly related to the literature of information contagion, as exemplified by Acharya and

Thakor (2011) and Oh (2012).9 Compared to the existing work, the current paper emphasizes

the self-fulfilling nature of such contagion and the two-way feedback between runs and asset

fire sales.

On the impact of increasing bank capital, the current paper relates to a few models that

show increased capital requirements can increase bank risk. Martinez-Miera (2009) argues that

equity increases banks’ cost of funding, which leads to higher loan rates and spurs risk-taking

by borrowers. As a result, banks’ portfolio risk rises passively. Hakenes and Schnabel (2007)

argue that a higher capital requirement erodes charter value and induces banks to actively take

risks; when the higher capital requirement decreases credit supply, it also leads to borrower

risk-taking via a hike in the loan rate. What all these papers have in common is that they focus

on insolvency risk. To the best of our knowledge, the current study is the first to show that

capital can contribute to the risk of bank runs.

8Using historical data, Fohlin, Gehrig, and Haas (2016) empirically document the feedback between market
and funding illiquidity, and provide supporting evidence that adverse selection on asset qualities contributes to the
vicious cycle.

9There are other approaches to model contagion. For instance, Freixas and Parigi (1998) and Freixas, Parigi,
and Rochet (2000) model direct linkages of banks through payment systems. Allen and Gale (2000) emphasize
the role of interbank market. Gorton (1988) studies how banks’ common risk exposures directly contribute to
systemic risk.
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On asset purchase programs, our paper is mostly related to the empirical policy evaluation

in Veronesi and Zingales (2010). The authors used Black-Scholes-Merton model to evaluate the

ex-ante costs and benefits of “Paulson’s Plan”, and concluded that the intervention yielded “a

net benefit between $86 and $109 bn”. The policy evaluation in our theoretical model also takes

an ex-ante perspective, and confirms the effectiveness of asset purchase programs in promoting

financial stability.

The discussion on disclosure policy is most related to several recent papers on the instability

consequences of public signals: Morrison and White (2013) concern that a public bailout can

reveal regulatory deficiency and make market participants lose their confidence in all other

banks under the same regulation. Dang, Gorton, and Holmström (2010) show that a public

signal could increase adverse selection to debt-like securities that are otherwise information

insensitive. And Wang (2013) empirically documents that after individual banks were identified

in Trouble Asset Relief Program (TARP), bank run probabilities, as reflected in CDS spread

and stock market abnormal returns, rose dramatically—an outcome the author attributes to the

bad news nature of public bailout. Our paper abstracts from specific policy announcements

and shows that as long as market participants believe the regulator is better informed, any

regulatory action or announcement concerning banks’ common risk exposure may generate

financial contagion.

The paper proceeds as follows. Section 2 lays out the model. Section 3 presents the baseline

bank-run model with endogenous fire-sale prices. With only one aggregate state, the baseline

model delivers a closed-form solution and allows us to discuss the first policy issue such as

whether higher capital can effectively reduce the risk of bank runs. In Section 4, we analyze

contagion in a fully-fledged model with two banks and two aggregate states. We show that

even if a regulator has no better information than typical market participants, asset purchase

programs can still improve financial stability at no social cost. In Section 5, we discuss the

trade-off associated with regulatory disclosures. And section 6 concludes.

2 Model setup

We consider a three-date (t = 0, 1, 2) economy with two banks.10 At t = 0, the banks are

identical. Each of them holds a unit portfolio of long-term assets, and finances the portfolio

10It should be emphasized that all results of the current paper can be easily generalized to a N-bank case.
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with equity E, retail deposits F, and short-term wholesale debt 1 − E − F. There are two

groups of active players: banks’ wholesale creditors and uninformed buyers of banks’ assets.

Both groups of players are risk neutral. We assume that retail deposits are fully insured so that

depositors act only passively. Since their claims are risk free, the depositors will always hold

their claims to maturity, and demand only a gross risk-free rate which we normalize to 1. It is

assumed that the financial safety net is provided to banks free of charge. We consider banks

as contractual arrangements among claim holders, designed to fulfil the function of liquidity

and maturity transformation (Diamond and Dybvig (1983)). Therefore, banks in our model are

passive, with given loan portfolios and liability structures.

Banks’ wholesale debt is risky, demandable, and raised from a continuum of creditors.

Provided that a bank does not fail, a wholesale debt contract promises a gross interest rate

rD > 1 at t = 2, and qrD if a wholesale creditor withdraws early at t = 1. Here q < 1 reflects the

penalty for the early withdrawal. A bank run occurs if a positive mass of wholesale creditors

withdraw funds from their bank at t = 1. For the ease of future exposition, we denote by D1 the

total amount of debt a bank needs to repay at t = 1 if all wholesale creditors withdraw early,

and by D2 the total amount of debt a bank needs to repay at t = 2 if no wholesale creditor

withdraws early.

D1 ≡ (1 − E − F)qrD

D2 ≡ (1 − E − F)rD + F

A bank’s portfolio generates a random cash flow θ̃ at t = 2. For simplicity, we assume

that θ̃ follows a uniform distribution on
î
θs, θ
ó
, and the random cash flows of the two banks

are independent and identically distributed. Subscript s denotes the realization of a systematic

risk that affects both banks. There are two possible aggregate states, G and B (e.g., housing

market boom or bust), and the two states occur with equal probability. With θG > θB, State

G is more favorable than State B. Therefore, the value of a bank’s assets is not only affected

by its idiosyncratic risk θ̃ but also by the aggregate state s. On the other hand, θ is assumed

to be the same across states. This reflects the fact that banks hold mostly debt claims whose

highest payoffs are capped by their face values. We make the following four further parametric
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assumptions.

D2 > θs (1)
θB + θ

2
> D2 (2)

F > D1 (3)

q >
1
2

+
θB

2D2
(4)

Inequality (1) states that there is a positive probability of bankruptcy in each state. Inequality

(2) states that, in the absence of bankruptcy costs, even if the realization of the aggregate state is

unfavorable, the expected cash flow from a bank’s assets is still greater than its debt obligations,

so that bank lending is viable. Combined together, inequality (1) and (2) state that banking is

efficient but risky. Inequality (3) suggests that a bank’s retail debt exceeds its wholesale debt,11

which is a realistic scenario and helps to simplify the analysis of bank run games.12 Finally,

inequality (4) suggests that the penalty on early withdrawal is only moderate,13 which is in

line with banks’ role as liquidity providers (Diamond and Dybvig (1983)). While we do not

endogenize banks’ capital structure (therefore taking q, D1, and D2 as given), as long as the

optimal capital structure satisfies the aforementioned conditions, all of our results will apply.

Banks’ assets are long-term, taking two periods to mature. In particular, we assume that at

t = 1 the assets cannot be physically liquidated. Therefore, if a wholesale run happens, to meet

the liquidity demand, a bank has to financially liquidate its assets in a secondary market, and

sell them to outside asset buyers. Because early liquidation is costly in this model, a bank will

sell its assets if and only if it faces a bank run.

2.1 Secondary asset market

Buyers in the secondary asset market are uninformed: they observe neither the aggregate

state s nor any bank’s cash flow θ. Yet, they can observe the number of bank runs, and based on

the observable outcome, form rational expectations about the quality of assets on sale. In this

11Note that for q < 1, inequality (3) also implies D2 > 2D1, because D2 = D1/q + F > D1 + F > 2D1.
12The condition is more than a technical assumption. It is realistic in the sense that despite of the rapid

growth of wholesale funding, most commercial banks and bank holding companies are still financed more by
retail deposits than wholesale debt.

13For example, when θB = 0, the condition states that q > 1/2. That is, by withdrawing early, a wholesale
creditors will not lose more than a half of the face value of his claim.
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two-bank setup, there are three distinct outcomes from the buyers’ perspective, i.e., the number

of bank runs N = 0, 1, or 2.

We assume the following sequential moves between asset buyers and wholesale creditors.14

Asset buyers first post a price scheme P = (P1 P2), and offer to purchase bank assets on sale at

price P1 when the number of bank runs N equals 1, and at P2 when N = 2. Having observed

the price scheme, wholesale creditors play a bank run game, making their individual decisions

simultaneously on whether to withdraw their funds early. In case any bank run happens, trans-

actions take place at the offered price, and assets are transferred to buyers.

The price scheme P is complete in the sense that an asset price is specified for each distinct

outcome of the bank run game where bank assets are on sale. Depending on the number of runs

observed, the prices that buyers offer can differ. In fact, in the absence of commitment power,

the asset buyers’ decisions need to be time consistent so that they will not revoke their posted

price after the outcomes of bank run games are revealed. As a result, the price P1 and P2 will

have to reflect buyers’ posterior beliefs on asset qualities. As buyers form different posterior

beliefs upon observing different numbers of bank runs, their offered prices will vary with the

number of runs.

The asset market is assumed to be perfectly competitive, and the buyers compete in the

price schemes that they offer. In equilibrium, based on their posterior beliefs, the asset buyers

should perceive themselves breaking even in expectation when purchasing bank assets at their

posted prices. As the buyers make time-consistent decisions and do not revoke their offers, they

must make no loss for any realized number of bank runs.

2.2 The bank run game

The demandable nature of wholesale debt allows creditors to withdraw their funds early,

forcing a bank to liquidate its assets before maturity. When the assets are sold for less than

their fundamental values, there will be a liquidation loss, or an asset fire sale. While creditors

who withdraw early can avoid suffering from the fire sale, those who do not withdraw will lose

if the bank fails. As a result, creditors’ actions to withdraw display strategic complementarities,

and it can be in the interest of all creditors to run on a bank that is otherwise solvent.

14It should be emphasized that the results of the model are robust to timing. If asset buyers and wholesale
creditors move simultaneously, one can derive the same results based on the rational expectations of both parties.
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A bank run game of complete information can have two strict equilibria: all creditors with-

draw from the bank, and nobody withdraws. To refine the equilibria, we take the global-games

approach pioneered by Carlsson and Van Damme (1993) and study games with incomplete

information where common knowledge on θ does not exist among creditors. We assume that

at the beginning of t = 1, both systematic risk (State s) and idiosyncratic risk (cash flow θ̃)

have been realized, but the information is not fully revealed to players. For a given bank, an

individual creditor i privately observes a noisy signal xi = θ + εi. Here, the noise εi is drawn

from a uniform distribution with a support [−ε, ε], where ε can be arbitrarily small. Based on

their private signals, the creditors play a bank-run game with each other. Each of the creditors

has two possible actions: to wait until maturity or to withdraw early, and follows a threshold

strategy: to withdraw early if and only if their individual private signal is lower than a critical

level x̂. In this two-bank setup, we also assume that each creditor holds claims in both banks,

and observes independent noisy signals for both banks’ cash flows.15

The maturity mismatch between banks’ liabilities and assets, together with potential asset

fire sales, exposes banks to the risk of runs. In particular, a run and premature liquidation at

t = 1 can cause the failure of a bank that is otherwise solvent at t = 2. In order to reassure

its creditors not to withdraw early, a bank has to be more than merely solvent, and the market

value of its equity should be able to absorb potential fire-sale losses. This implies a critical cash

flow θ̂ > D2 for a bank to survive a run. The distance between θ̂ and D2 provides a measure of

financial fragility. Moreover, a lower asset price implies greater fire-sale losses and, therefore,

a higher critical cash flow θ̂ for a bank to survive a run.

We assume that bankruptcy costs are sufficiently high such that once a bank fails, the whole-

sale creditors get zero payoff and only a senior deposit insurance company obtains the residual

value.16 Given this assumption, if a bank is to fail at t = 1, a wholesale creditor will receive

zero payoff whether he withdraws early or not. In this case of indifference, we assume that the

creditor will always withdraw. One justification is that wholesale creditors receive reputational

benefits by running on a bank that is doomed to fail.17

15It is not uncommon for institutional investors to hold demandable debt claims in multiple banks. A similar
assumption can be found in Goldstein and Pauzner (2004).

16It should be noted that this is off equilibrium in the model, because the wholesale debt is demandable and the
wholesale creditors will withdraw early at t = 1, before the bank fails.

17The reputational benefit may come from the fact that the creditor makes a “right decision”. More detailed
discussion on this assumption can be found in Rochet and Vives (2004). The authors argue that the vast majority
of wholesale deposits are held by collective investment funds, whose managers are compensated if they build a
good reputation, and penalized otherwise.
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2.3 Asymmetric information on cash flow θ

Intelligent asset buyers can solve the creditors’ bank run game and thereby form rational

beliefs on the qualities of assets on sale. In particular, they know that a bank will be forced

into liquidation if and only if its cash flow is below θ̂. However, the lack of more detailed

information makes solvent banks (those with D2 ≤ θ < θ̂) indistinguishable from the insolvent

ones (those with θ < D2). An equilibrium asset price will reflect only the average quality of

assets on sale. Therefore, a bank with cash flow θ greater than the equilibrium price but less

than θ̂ will experience an asset fire sale.

A lower asset price pushes θ̂ , the critical cash flow necessary to avoid a run, upwards. Thus,

there will be two-way feedback between asset fire sales and bank runs. When asset buyers offer

a low price for a bank’s assets, a run is triggered, which generates the pooling of assets, and

thus fully justifies the low asset price offered in the first place. As a result, fire sales and bank

runs can reinforce each other.

2.4 Belief updating on State s

While asset buyers hold a prior belief that State B and G occur with equal probability, after

observing any bank runs, they update their beliefs according to Bayes’ rule and consider State B

to be more likely. The pessimistic belief updating can lead to financial contagion. In particular,

a bank may face no runs if the other bank does not face a run, but will face a run if the other

bank does. This defines financial contagion in our model.

In our model, financial contagion is self-fulfilling. When observing more bank runs, asset

buyers infer State B to be increasingly likely, and reduce the asset price that they offer accord-

ingly. The fear of increased liquidation losses makes wholesale creditors panic even more, and

can lead to simultaneous bank runs in the first place.

2.5 Timing

The timing of the model is summarized in Figure 1. Events at t = 1 take place sequentially.
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Figure 1: Timing of the game

t = 0 t = 1 t = 2

Banks are established,
with their portfolios
and liability structures
as given.

1. s and θ̃ are realized.
2. Asset buyers post a price scheme.
3. For each bank that they lend to, creditors
receive private noisy signals about the bank’s
cash flow θ, and decide to run or not.
4. After observing the number of bank runs,
buyers purchase assets at the quoted price.

1. Returns become
public.
2. Remaining obliga-
tions are settled.

3 Mutually reinforcing bank runs and asset fire sales

Depending on the realization of θ̃, the model can have two types of equilibria: one type

with bank runs, and the other without. A market equilibrium with bank runs consists of two

components. First, the bank run game features a threshold equilibrium. That is, when N runs

happen and bank assets are sold for an equilibrium price P∗N , a bank will experience a run if

and only if its cash flow is lower than a unique threshold θ∗N ≡ θ̂
(
P∗N
)
, N ∈ {1, 2}. Second,

the competitive asset market is in a rational expectations equilibrium. That is, asset buyers

form a rational belief about the quality of assets on sale based on the observed number of bank

runs N. In particular, they anticipate θ < θ̂
(
P∗N
)
, and Batesian update their beliefs on State s.

According to such posterior beliefs, asset buyers who purchase bank assets at an equilibrium

price P∗N should perceive themselves to break even in expectation. Moreover, the buyers should

find themselves unable to profitably deviate from bidding P∗N .

Definition. Denote θ̂ (PN) the threshold equilibrium of the bank run game for a given asset

price PN; and PN

Ä
θ̂
ä

the price scheme by which asset buyers break even in expectation for

a given threshold θ̂ and their rational beliefs about θ and s. An equilibrium associated with

N bank runs, N ∈ {1, 2}, is defined by an equilibrium critical cash flow θ∗N ≡ θ̂
(
P∗N
)

and an

equilibrium asset price P∗N ≡ PN
(
θ∗N
)
. The combination of θ∗N and P∗N is such that: for the N

bank runs in the economy, (1) a successful run happens to a bank if and only if the bank’s cash

flow is lower than θ∗N; (2) the competitive secondary asset market is in a rational expectations

equilibrium: asset buyers form rational beliefs about State s and the quality of assets on sale,

and based on their posterior beliefs, perceive themselves to make zero profit in expectation by
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purchasing bank assets for P∗N . Furthermore, the buyers cannot make any profitable deviation

by bidding any price other than P∗N

It takes four steps to solve for a bank run equilibrium.

• First, defining P ≡ (θB + D2) /2 ∈ (D1,D2), we show that an equilibrium asset price P∗N

cannot be lower than P, nor higher than or equal to D2 (subsection 3.1). This restricts the

set of candidate equilibria and will facilitate the solution of bank run games.

• Second, solving the model using backward induction, we start with creditors who move

last and solve the bank run game using the concept of global games. For a given asset

price PN ∈ [P,D2), we derive a unique critical cash flow θ̂ (PN), so that a bank run will

happen if and only if the bank’s cash flow θ < θ̂ (PN) (subsection 3.2).

• Third, we characterize asset buyers’ posterior beliefs on asset qualities when N bank runs

occur. In particular, they expect only those assets with quality θ < θ̂(PN) to be on sale,

and update their beliefs about State s using Bayes’ rule. It should be emphasised that the

buyers’ rational beliefs are functions of asset prices that they offer (subsection 3.3).

• Finally, we solve for the equilibrium of the model by examining equilibrium asset prices.

As asset buyers offer different prices given different numbers of bank runs, we solve for

an equilibrium price P∗N for each N ∈ {1, 2}. In a competitive equilibrium, P∗N should be

equal to the expected asset quality based on buyers’ posterior beliefs upon observing N

bank runs (subsection 3.3).

To illustrate the main intuition behind the feedback between bank runs and asset fire sales,

we present in subsection 3.4 a simplified version of the model where there is only one state so

that asset buyers do not update their beliefs on State s. This simplification allows us to derive a

closed-form solution to our model, and is sufficient to generate some interesting results such as

the unintended liquidity consequences of bank capital. The fully-fledged model with different

states is analyzed in section 4.

3.1 Restricting the set of candidate equilibria

Since an equilibrium price cannot be negative, a candidate equilibrium price P∗N must be in

one of the three regions:
[
0, P

)
,
[
P,D2

)
, or

[
D2,+∞

)
. We will show that there exists a unique

equilibrium price P∗N ∈
[
P,D2

)
associated with N bank runs. And we start with showing that

P∗N cannot be lower than P, nor can it be greater than or equal to D2.
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Suppose P∗N ≥ D2. It follows that for any bank with θ ∈ [D2, θ], it is suboptimal for its

wholesale creditors to withdraw early. Because given P∗N ≥ D2, an asset sale at t = 1 will not

hurt the bank’s capability to repay its liabilities at either t = 1 or t = 2. As a result, by running

on the bank, a creditor will only incur the penalty for early withdrawal. This implies that

whenever a run happens, the bank must be fundamentally insolvent with θ < D2. Therefore,

the highest asset quality that buyers can expect is D2, with the expected quality strictly lower

than that. To avoid making losses, the price that the buyers pay must be lower than or equal to

the expected quality, and therefore strictly lower than D2, which contradicts the presumption

P∗N ≥ D2.

An equilibrium price P∗N cannot be smaller than P either. To see so, note that when a bank

is fundamentally insolvent with cash flow θ < D2, it is a dominant strategy for its wholesale

creditors to run. Specifically, if P∗N ≥ D1 so that the bank does not fail at t = 1, a creditor is

better off to run and receive qrD than to wait and receive 0. On the other hand, if P∗N < D1,

a creditor will receive a zero payoff for his claim whether he runs or not, but can still obtain

reputational benefits by running on a bank that is doomed to fail. This implies that runs must

happen to those banks with θ < D2, and the expected quality of assets on sale is at least

(θB + D2) /2 = P. Since asset buyers only break even in equilibrium, the price they offer must

be greater than or equal to P. We summarize these results in Lemma 1.

Lemma 1. An equilibrium asset price cannot be greater than or equal to D2, and cannot be

smaller than P.

A corollary of PN ≥ P is that banks do not fail at t = 1. This is because PN ≥ P > D1

so that banks can always repay their t = 1 liabilities. Runs on the intermediate date, however,

accelerate bank failures because fire-sale losses lead to a higher probability of t = 2 bankruptcy.

3.2 Threshold equilibrium for bank run games

We solve the model by backward induction, and start with the subgame of bank runs. We

show that for a given price PN ∈ [P,D2) the bank run game has a unique threshold equilibrium

characterized by a critical cash flow θ̂ (PN). A successful bank run happens if and only if the

bank’s cash flow is lower than θ̂ (PN).

To solve for the optimal strategy of creditors, we first derive their payoffs for action “wait”

and “withdraw” as functions of the number of other creditors who withdraw early. Denote by
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L ∈ [0, 1] the fraction of creditors who withdraw from the bank at t = 1. A bank that faces a

total withdrawal of LD1 can meet the demand for liquidity with a partial liquidation by selling

a fraction λ of its assets.18

λ =
LD1

PN
< 1 (5)

After liquidating a fraction λ of its assets, the bank will fail at t = 2 if and only if the value of

its remaining assets is lower than its remaining liabilities. That is,

(1 − λ)θ < F + (1 − L)(1 − E − F)rD. (6)

Thus, a bank will fail at t = 2 if and only if the fraction of creditors’ withdrawal exceeds a

threshold Lc.

L >
PN[θ − F − (1 − E − F)rD)]

(qθ − PN)(1 − E − F)rD
=

PN(θ − D2)
(θ − PN/q) D1

≡ Lc. (7)

Such a t = 2 failure happens because the partial early liquidation incurs a fire-sale loss. When a

sufficiently large number of creditors withdraw and the bank is forced to liquidate a significant

share of assets prematurely, the remaining assets will not generate sufficient cash flows to meet

the remaining liabilities. The creditors who withdraw early at t = 1 therefore can impose

negative externalities on creditors who choose to wait.

Depending on the number of early withdrawals L, a creditor’s payoffs of playing “with-

draw” or “wait” are tabulated as follows.

L ∈ [0, Lc) L ∈ [Lc, 1]

withdraw qrD qrD

wait rD 0

Note that if a creditor withdraws, his payoff will always be Wrun(L) = qrD. Instead, if he waits,

his payoff depends on the action of other creditors.

Wwait(L) =

 rD L ∈ [0, Lc]

0 L ∈ [Lc, 1]

18Here λ < 1 is guaranteed by PN > D1. Note that three factors contribute to the amount of early liquidation:
(i) a large number of early withdrawals, (ii) a low price for assets on sale, and (iii) a high level of wholesale debt.
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Defining the difference between the creditor’s payoffs of “withdraw” and “wait” as DW(L) ≡

Wwait(L) −Wrun(L), we have the following expression.

DW(L) =

 (1 − q)rD L ∈ [0, Lc]

−qrD L ∈ [Lc, 1]

The strategic complementarity is clear: when a sufficiently large number of other creditors

choose to withdraw (L > Lc), a wholesale creditor receives better payoff from “withdraw” than

from “wait”. In fact, when there is complete information on θ, the bank run game has two

equilibria in which either all creditors withdraw or all creditors wait. We refine the multiple

equilibria using the technique of global games.

The analysis follows a standard global-games approach. We give here the outline of the

proof, and interested readers can refer to Appendix A for full details. First, we establish the

existence of a lower dominance region
[
θs, θ

L), where it is a dominant strategy for all wholesale

creditors to withdraw early, independently of the private signals that they receive. Similarly,

we show that, provided θ > F/(1 − D1/P), there exists an upper dominance region
î
θU(PN), θ

ó
,

where it is a dominant strategy for all creditors to wait.19 For an intermediate θ ∈
[
θL, θU(PN)

)
,

a creditor’s payoff depends on the actions of other creditors. So, as a second step, we charac-

terize a creditor i’s ex-post belief about the other creditors’ actions. The creditor’s belief is a

conditional distribution of L based on his private signal xi = θ+εi. The creditor then chooses his

optimal action based on his ex-post belief and payoff function DW(L). Finally, for the limiting

case where the noise of the signal approaches zero, we obtain a unique threshold

θ̂ (PN) =
D2 − D1

1 − qD1/PN
(8)

such that a successful bank run will happen if and only if the bank’s cash flow θ < θ̂(PN). The

results are summarized in Proposition 1.

Proposition 1. For a given secondary market asset price PN ∈ [P,D2), the bank run game has

a unique threshold equilibrium: a successful run occurs to a bank if and only if the bank’s cash

flow falls below a critical level θ̂ (PN) = D2−D1
1−qD1/PN

.

Proof. See Appendix A. �

19One can derive θL explicitly as θL = D2 and show that θU has an upper bound F/(1 − D1/P).
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Expression (8) establishes a one-to-one correspondence between a given asset price PN and

a corresponding critical cash flow θ̂(PN). Note that the critical cash flow θ̂(PN) decreases in PN .

A lower asset price makes successful bank runs more likely.

3.3 Asset market equilibrium

The uninformed asset buyers observe neither cash flow θ nor State s, but they can form ra-

tional beliefs about the quality of assets on sale. First, they anticipate the threshold equilibrium

for the bank run game to be characterized by θ̂(PN). Therefore, when N bank runs happen,

the buyers form a rational belief that only those assets of quality θ < θ̂(PN) will be on sale.

Second, the asset buyers also update their beliefs about State s using Bayes’ rule. We denote

by ωG
N

Ä
θ̂(PN)

ä
the buyers’ posterior belief that s = G when the observed number of bank runs

equals N, and by ωB
N

Ä
θ̂(PN)

ä
their posterior belief for s = B. It should be emphasized that the

posterior beliefs depend on buyers’ offered price PN .

Note that two factors contribute to asset fire sales. First, conditional on a bank run having

happened, the cash flow of the bank must be lower than θ̂(PN). The buyers face an adversely

selected pool of assets in the sense that only those banks with low cash flow will be forced into

liquidation. Second, any observed bank runs also indicate that s = B is more likely. This further

reduces the expected quality of assets on sale, which in turn reduces asset buyers’ willingness

to pay.

When the asset market is perfectly competitive, an equilibrium asset price must satisfy two

conditions. First, based on their rational expectations about θ and s, the buyers should make a

zero expected profit by purchasing bank assets at the posted price. In other words, when there

are N bank runs, an equilibrium asset price P∗N must be equal to the expected asset quality.

P∗N = E
î
θ
∣∣θ < θ̂(P∗N),N

ó
= ωB

N

Ä
θ̂(P∗N)

ä θB + θ̂(P∗N)
2

+ ωG
N

Ä
θ̂(P∗N)

ä θG + θ̂(P∗N)
2

(9)

Second, buyers should not be able to make any profitable deviation by unilaterally bidding a

higher price. Therefore, their expected net payoff, ΠN(PN) ≡ E
î
θ
∣∣θ < θ̂(PN),N

ó
− PN , should

not increase in their bid PN .

The equilibrium has a fixed-point representation: P∗N should be a fixed point for function

E
î
θ
∣∣θ < θ̂(PN),N

ó
. We show that for each N ∈ {1, 2}, the fixed-point equilibrium exists and is
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unique. We also verify that the equilibrium is stable in the sense that buyers cannot profitably

deviate by unilaterally bidding a higher price.

3.4 A baseline model

The feedback between a bank run and an asset fire sale can be examined without different

aggregate states. To illustrate the main intuition, we analyze a baseline case of our model with

θB = θG = θ. In this case, buyers do not update their beliefs about State s, so their posted price

scheme will consist of only one unified price P. For this baseline model, we denote the market

equilibrium by {θe, Pe}, and obtain a closed-form solution.

As discussed, intelligent asset buyers can solve the subgame of bank runs and anticipate

only those assets of quality θ < θ̂(P) to be on sale. When the asset market is in a competitive

equilibrium, asset buyers who purchase banks’ assets for price P should break even in expec-

tation. Given their belief θ ∼ U
Ä
θ, θ̂(P)

ä
, a candidate equilibrium price Pe must satisfy the

following zero-profit condition.

Pe =
θ̂(Pe) + θ

2
(10)

With θ̂(P) derived in equation (8), we can write the condition explicitly

Pe =
1
2

Ç
D2 − D1

1 − qD1/Pe
+ θ

å
, (11)

and further rearrange it into a quadratic form

2P2
e − ΨPe + qθD1 = 0, (12)

where Ψ ≡ (D2−D1)+2qD1 +θ. As equation (12) has one and only one root in interval (P,D2),

we obtain the following closed-form solution for the equilibrium asset price.

Pe =
Ψ +

»
Ψ2 − 8qD1θ

4
(13)

For Pe to be an equilibrium, asset buyers should not be able to make a profitable deviation

by unilaterally bidding a higher price. That is, a buyer’s expected payoff, E
î
θ
∣∣θ < θ̂(P)

ó
− P,

should not increase in P. In the baseline model, asset buyers’ expected payoff takes the form

18



Π(P) =
Ä
θ̂(P) + θ

ä
/2 − P, and it monotonically decreases in P.

dΠ(P)
dP

=
1
2
∂θ̂(P)
∂P

− 1 < 0

By equation (11), we know that the equilibrium asset price is such that Π(Pe) = 0, so an asset

buyer will earn negative profit by unilaterally bidding a price P > Pe. Intuitively, by bidding a

higher price, a buyer decreases her expected payoff in two ways. First, a higher bid increases

the cost for acquiring a piece of asset, which directly reduces her payoff. Second, a higher price

P also alleviates the bank run risk, making fewer banks sell for liquidity reasons. As a result,

the buyer faces a pool of assets with deteriorating quality where more banks are selling assets

because of fundamental insolvency. This again reduces her expected payoff.

Having solved Pe, we can obtain the corresponding equilibrium critical cash flow θe ≡ θ̂(Pe)

from expression (10). One can also verify that θe ∈
(
θL, θU(Pe)

)
.

θe =
Ψ +

»
Ψ2 − 8qD1θ − 2θ

2
(14)

The market equilibrium {θe, Pe} reflects asymmetric information on asset qualities. By offer-

ing Pe, an uninformed buyer makes a loss when θ < Pe, and a profit when θ > Pe. Furthermore,

as a lower θ aggravates the information asymmetry, it reduces the buyers’ willingness to pay,

and makes banks more likely to be illiquid. Mathematically, we have θe decreasing in θ.

Figure 2 illustrates the equilibrium funding liquidity risk. A bank with θ ∈ [D2, θe) may

fully repay its debt obligations if no bank run happens, yet it will fail in equilibrium because of

premature asset liquidation caused by the run of its wholesale creditors.

Figure 2: The unique equilibrium of the baseline model

insolvent

θ

solvent but illiquid

D2 θe

super-solvent

θU

Proposition 2. The baseline model has a unique equilibrium, with equilibrium asset price

Pe ∈ (P,D2) and equilibrium critical cash flow θe ∈
(
θL, θU(Pe)

)
specified in (13) and (14)
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respectively. A bank with cash flow θ ∈ [D2, θe) is solvent but illiquid: it will fail because of a

wholesale debt run, even though its assets can generate a cash flow greater than its liabilities.

Proof. See Appendix B.1. �

3.5 Application I: capital and bank run risk

It is conventional wisdom that capital helps reduce the risk of bank runs. An application of

the current framework, however, shows that the relationship is more subtle. We show that once

asset prices are endogenous, capital also contributes to bank runs via stressed asset prices.

We model an increase of bank capital in its most simplistic form. We assume that a bank

maintains its unit portfolio size, increasing its equity from E to E + ∆, and at the same time

decreasing its retail deposits from F to F − ∆. In other words, an increase in capital reduces

D2 to D2 − ∆ but does not affect D1.20 We then examine how increasing capital affects banks’

funding liquidity risks. To measure the risk, we follow Morris and Shin (2009) and define the

equilibrium funding liquidity risk as IL ≡ θ̂(Pe) − D2, with IL standing for illiquidity.21

Under exogenous asset prices, a natural corollary of Proposition 1 is that a higher capital

always reduces funding liquidity risks, because the market value of capital serves as an extra

buffer against fire-sale losses. The value of wholesale debt is better protected and wholesale

creditors have less incentives to run, a channel that we call “buffer effect”. Mathematically,

recall that θ̂(P) = D2−D1
1−qD1/P

, we can write IL explicitly as

IL =
D2 − D1

1 − qD1/Pe
− D2. (15)

With price P exogenous and not a function of ∆, it is straightforward to verify that increasing

bank capital unambiguously reduces illiquidity.

∂IL
∂∆

= −
qD1

Pe − qD1
< 0 (16)

With endogenous asset prices, the situation is more complicated. Once investors rationally

update their beliefs about a bank’s asset qualities, a higher capital level also contributes to

20An alternative assumption would involve reducing D1, which directly decreases the amount of demandable
short-term debt and therefore confounds the impact of changing capital on the risk of bank runs.

21Strictly speaking, the bank run risk should be measured as a probability Prob
(
D2 < θ < θ̂(Pe)

)
= θ̂(Pe)−D2

θ−θ
.

We drop the the denominator because it is a constant and does not affect comparative statistics.
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bank runs by reducing endogenous fire-sale prices. The intuition is as follows. In terms of

inferring the realization of θ, a bank run presents more negative news when it happens to a well-

capitalized bank than when it happens to a poorly-capitalized bank. Because a well-capitalized

bank is able to sustain large losses, the fundamentals of the bank must be unusually poor for

the run to happen. With such pessimistic inference about θ, buyers’ willingness to pay for the

bank’s assets decreases with the observed capital level. Therefore, a change in bank capital

affects illiquidity not only via D2, but also via the endogenous asset price Pe.

∂IL
∂∆

=
∂IL
∂D2

∂D2

∂∆
+
∂IL
∂Pe

∂Pe

∂∆
(17)

The first term captures the traditional “buffer effect” as in the case where the asset price is

exogenous. The second term captures a new channel that we want to emphasize: increasing

capital also affects banks’ funding liquidity risk via endogenous asset prices.

To see that higher capital leads to a lower secondary market asset price, one can simply take

the first order derivative of the closed-form solution of Pe, which gives

∂Pe

∂∆
= −

1
4
−

1
4

Ψ»
Ψ2 − 8qD1θ

< 0.

Increasing capital decreases asset buyers’ willingness to pay for a bank’s assets on sale, which

in turn makes creditors panic and bank runs more likely. This is captured by

∂IL
∂Pe

∂Pe

∂∆
> 0.

Hence, capital can contribute to funding liquidity risk by reducing endogenous asset prices, a

mechanism we dub “inference effect”. Comparing expression (16) with (17), it should be clear

that with endogenous asset prices and the “inference effect”, capital is less able to contain bank

run risks as compared to the case where asset price is exogenous. Asset buyers’ rational beliefs

limit the role of capital in containing funding liquidity risk.

The overall impact of capital on funding liquidity risk depends on the relative strength of

the “buffer effect” and the “inference effect”. Using the closed form solution of Pe and θe, one

can calculate the overall impact explicitly.

∂IL
∂∆

= −
qD1

Pe − qD1
+

1
4

q(D2 − D1)D1

(Pe − qD1)2

1 +
Ψ»

Ψ2 − 8qD1θ

 (18)
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It can be shown that in the extreme case where θ = 0, ∂IL/∂∆ = 0 and increasing capital cannot

reduce funding liquidity risk at all. Intuitively, a lower θ reduces the expected quality of assets

on sale, and therefore reduces buyers’ willingness to pay. With

∂

∂θ

(
∂Pe

∂∆

)
> 0,

the price drop is most pronounced when θ = 0. In that case, the “inference effect” reaches its

maximum and completely offsets the “buffer effect” of capital. We summarize the results in the

following proposition.

Proposition 3. In equilibrium, higher bank capital leads to a lower asset fire-sale price. Com-

pared to the case where the price is exogenous, capital is less able to reduce the risk of bank

runs. In the extreme case where θ = 0, higher capital does not reduce bank liquidity risk at all.

Proof. See Appendix B.2 �

The result suggests that the design of prudential regulations has to take into account the

responses of market participants. Compared to the situation where regulations are lax, market

participants’ interpretation of the same piece of negative news can be more pessimistic under

stringent regulations. As a result, the effectiveness of stringent prudential regulations will be

reduced, or even completely eliminated.

4 Self-fulfilling financial contagion

In this section, we extend the baseline model to include two aggregate states. Asset buyers

will be able to update their beliefs about State s based on different numbers of bank runs.

They perceive s = B to be more likely when more bank runs are observed. In the absence of

commitment power, the equilibrium prices that buyers offer must reflect their posterior beliefs,

and therefore vary with the number of runs. We characterize market equilibrium associated

with a single bank run and that associated with two bank runs, respectively. We show that for

a given N ∈ {1, 2}, there exists a unique market equilibrium characterized by {P∗N , θ
∗
N} (section

4.1 and 4.2). We further establish that financial contagion can arise as a multiple-equilibria

phenomenon, highlighting how pessmistic beliefs can drive financial fragility (section 4.3).

Finally, we discuss how an asset purchase program committed by a regulator can improve

financial stability over the market equilibria (section 4.4).
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4.1 Market equilibrium with a single bank run

We start with characterizing the equilibrium associated with a single bank run. For a given

asset price P1 that corresponds to the single-bank-run outcome, the bank run game has a unique

threshold equilibrium characterized by θ̂(P1). So asset buyers know that a bank run happens if

and only if the bank’s cash flow is lower than θ̂(P1), and update their beliefs about the aggregate

state according to Bayes’ rule. Recall that ωs
1

Ä
θ̂(P1)

ä
denotes buyers’ posterior belief for State

s when they observe a single bank run.

ωB
1

Ä
θ̂(P1)

ä
≡ Prob(s = B|N = 1) =

Ä
θ̂(P1) − θB

ä Ä
θ − θ̂(P1)

äÄ
θ̂(P1) − θB

ä Ä
θ − θ̂(P1)

ä
+
Ä
θ̂(P1) − θG

ä Ä
θ − θ̂(P1)

ä
=

Ä
θ̂(P1) − θB

äÄ
θ̂(P1) − θB

ä
+
Ä
θ̂(P1) − θG

ä
ωG

1

Ä
θ̂(P1)

ä
≡ Prob(s = G|N = 1) =

Ä
θ̂(P1) − θG

ä Ä
θ − θ̂(P1)

äÄ
θ̂(P1) − θB

ä Ä
θ − θ̂(P1)

ä
+
Ä
θ̂(P1) − θG

ä Ä
θ − θ̂(P1)

ä
=

Ä
θ̂(P1) − θG

äÄ
θ̂(P1) − θB

ä
+
Ä
θ̂(P1) − θG

ä
When the competitive asset market is in a rational expectations equilibrium, based on their

posterior beliefs, asset buyers should expect to break even when purchasing bank assets for

price P∗1. Their ex-post zero-profit condition (9) can now be written as follows.

P∗1 = E
î
θ
∣∣θ < θ̂(P∗1),N = 1

ó
= ωB

1

Ä
θ̂(P∗1)

ä θB + θ̂(P∗1)
2

+ ωG
1

Ä
θ̂(P∗1)

ä θG + θ̂(P∗1)
2

(19)

A candidate equilibrium price P∗1 should be a fixed point of function E
î
θ|θ < θ̂(P∗1),N = 1

ó
.

Alternatively, denoting by Π1(P1) an asset buyer’s net expected payoff when her offered price

is P1, we can re-write the zero-profit condition as in below.

Π1(P∗1) ≡ ωB
1

Ä
θ̂(P∗1)

ä(θB + θ̂(P∗1)
2

− P∗1

)
+ ωG

1

Ä
θ̂(P∗1)

ä(θG + θ̂(P∗1)
2

− P∗1

)
= 0 (20)

Finding a fixed point P∗1 is equivalent to finding a solution for equation (20).

For P∗1 to be an equilibrium, an asset buyer must not profit by unilaterally raising her bid

above P∗1. In other words, function Π1(P1) should not increase in P1. Such monotonicity always

holds, and the intuition is as follows. First of all, as discussed in section 3.4, increasing price

raises the cost of acquiring bank assets and leads to an deteriorating quality in the asset pool.

Second, when P1 increases, the risk of bank run is mitigated, and a bank selling its assets is
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more likely to be fundamentally insolvent rather than facing a pure liquidity issue. For a given

number of bank runs observed, this suggests that s = B is more likely, ∂ωB
1

Ä
θ̂(P1)

ä
/∂P1 > 0,

which further reduces the buyer’s expected payoff.

Lemma 2. Π1(P1) monotonically decreases in P1, so that given a single bank run is observed,

a buyer’s expected payoff monotonically decreases in her bid.

Proof. See Appendix B.3. �

With extra complications introduced by the posterior beliefs on s, we can no longer obtain

closed-form solutions for P∗1 and θ∗1. Instead, we prove that there exists a unique P∗1 ∈ (P,D2)

that satisfies equation (19), and a corresponding θ∗1 ∈ (θL, θU(P∗1)) by (8). The proof is based

on the continuity of Π1(P1). In particular, we show that Π1(P1) is negative when P1 = P and

positive when P1 = D2. Furthermore, given the monotonicity of Π1(P1), once an equilibrium

exists, it is also unique. As a result, the market equilibrium associated with one bank run can

be characterized by a unique pair {P∗1, θ
∗
1}. The result is summarized in the proposition below.

Proposition 4. There exist a unique equilibrium asset price P∗1 ∈ (P,D2) and a unique equilib-

rium critical cash flow θ∗1 ∈
(
θL, θU(P∗1)

)
, associated with one bank run. A bank with cash flow

θ ∈
[
D2, θ

∗
1
)

is solvent but illiquid when one bank run happens.

Proof. See Appendix B.4. �

4.2 Market equilibrium with two bank runs

Following the same approach as in the last subsection, we now characterize the market

equilibrium associated with two bank runs. For a given asset price P2 that corresponds to a

two-bank-run outcome, a bank will fail because of a run if and only if its cash flow θ < θ̂(P2).

Again, we formulate asset buyers’ posterior beliefs about State s according to Bayes’ rule.

ωB
2

Ä
θ̂(P2)

ä
≡ Prob(s = B|N = 2) =

Ä
θ̂(P2) − θB

ä2Ä
θ̂(P2) − θB

ä2
+
Ä
θ̂(P2) − θG

ä2

ωG
2

Ä
θ̂(P2)

ä
≡ Prob(s = G|N = 2) =

Ä
θ̂(P2) − θG

ä2Ä
θ̂(P2) − θB

ä2
+
Ä
θ̂(P2) − θG

ä2
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Based on the posterior beliefs, the asset buyers’ break-even condition P∗2 = E
î
θ|θ < θ̂(P∗2),N = 2

ó
can be written as follows.

P∗2 = ωB
2

Ä
θ̂(P∗2)

ä θB + θ̂(P∗2)
2

+ ωG
2

Ä
θ̂(P∗2)

ä θG + θ̂(P∗2)
2

(21)

Alternatively, denoting by Π2(P2) an asset buyer’s net expected payoff when her offered price

is P2, we can re-write the zero-profit condition as in below.

Π2(P∗2) ≡ ωB
2

Ä
θ̂(P∗2)

ä(θB + θ̂(P∗2)
2

− P∗2

)
+ ωG

2

Ä
θ̂(P∗2)

ä(θG + θ̂(P∗2)
2

− P∗2

)
= 0 (22)

Lemma 3 shows that buyers’ expected payoff monotonically decreases in P2, so that they have

no profitable deviation. Thus, any solution to equation (22) is indeed a market equilibrium.

Lemma 3. Π2(P2) monotonically decreases in P2, so that given two bank runs are observed, a

buyer’s expected payoff monotonically decreases in her bid.

Proof. See Appendix B.5. �

To prove the existence of and uniqueness of the equilibrium, we again use the monotonicity

and continuity of Π2(P2). We show that Π2(P2) is negative at P and positive at D2, so that

the market equilibrium associated with two bank runs can be characterized by a unique pair

{P∗2, θ
∗
2}. The result is summarized in Proposition 5.

Proposition 5. There exist a unique equilibrium asset price P∗2 ∈ (P,D2) and a unique equilib-

rium critical cash flow θ∗2 ∈
(
θL, θU(P∗2)

)
, associated with two bank run. A bank with cash flow

θ ∈
[
D2, θ

∗
2
)

is solvent but illiquid when two bank run happens.

Proof. See Appendix B.6. �

4.3 Financial contagion and multiple equilibria

θ∗2 > θ
∗
1 would imply potential contagion. In particular, when a bank’s cash flow lies between

θ∗1 and θ∗2, the bank will face no run if the other bank does not face a run, and will fail in a

wholesale run if the other bank does. We prove with Lemma 4 that θ∗2 > θ∗1 is indeed the

case. Intuitively, asset buyers form more pessimistic beliefs about State s when they observe

more bank runs. Their willingness to pay for banks’ assets decreases because banks’ expected
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asset qualities are lower in State B. This in turn reduces the equilibrium asset price and pushes

upwards the equilibrium critical cash flow that a bank has to meet to survive a run.

Lemma 4. When more runs are observed, the equilibrium asset price is lower, P∗2 < P∗1, and

the risk of bank runs is higher, θ∗2 > θ
∗
1.

Proof. See Appendix B.7. �

Financial contagion emerges as a multiple-equilibrium phenomenon in the current model.

In fact, when a bank’s cash flow θ ∈
[
θ∗1, θ

∗
2
)

and the other bank’s cash flow θ < θ∗2, the equilib-

rium number of bank runs N depends on creditors’ beliefs about each others’ strategies. Notice

that only two threshold strategies can be be rationalized as part of a market equilibrium, i.e., an

optimistic threshold strategy, “to run if and only if x < θ∗1”, and a pessimistic threshold strategy,

“to run if and only if x < θ∗2”. As a result, we can focus on these two threshold strategies only.

We show that financial contagion can happen purely because of creditors’ pessimistic beliefs.

For the ease of exposition, we label the two banks as i and j, and discuss the following two

cases respectively. (1) Bank i has a cash flow θ ∈
[
θ∗1, θ

∗
2
)
, and Bank j has a cash flow θ < θ∗1.22

(2) Bank i and j both have cash flows between θ∗1 and θ∗2.

In the first case, the equilibrium number of bank runs can be either 1 or 2, depending on

creditors’ belief about each others’ strategies. With a cash flow θ < θ∗1, Bank j will fail in a run

whether creditors follow the optimistic or pessimistic strategy. Therefore, there will be at least

one bank run in the economy. Whether Bank i will have a run, however, depends on creditors’

beliefs. If creditors believe that a positive mass among them follow the pessimistic strategy,

they will expect a run on Bank i and an asset price P∗2, so that it is optimal to join the run. As a

result, all creditors withdrawing early from Bank i can emerge as an equilibrium. By contrast,

if all creditors believe that none of them follow the pessimistic strategy, they would expect the

asset price to be P∗1, and only Bank j to fail, which justifies their optimistic belief/strategy in

the first place.

In the second case, the equilibrium number of bank runs can be either 0 or 2, depending

again on creditors’ beliefs. If all creditors believe that none of them follow the pessimistic

strategy, no run will happen, because both banks’ cash flows are higher than θ∗1. Therefore,

N = 0 can be an equilibrium outcome. In contrast, if a creditor believes that a positive mass

among them follow the pessimistic strategy, he will expect two bank runs and assets sold for
22The symmetric case where Bank i has a cash flow θ < θ∗1, and Bank j has θ ∈ [θ∗1, θ

∗
2) can be analyzed with

the same reasoning.
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price P∗2, so that it is optimal for him to join the run. Therefore, N = 2 can emerge as an

equilibrium outcome. The creditor’s belief must be that a positive mass of creditors will run on

each of the two banks. Because if the pessimistic creditors are only present in one bank, those

creditors’ strategy cannot be rationalized. Therefore, N = 1 cannot be an equilibrium outcome.

In sum, multiple equilibria can emerge when one bank’s cash flow is in
[
θ∗1, θ

∗
2
)

and the other

bank’s cash flow is below θ∗2. The contagion is self-fulfilling and fuelled by creditors’ beliefs.

In Figure 3, we plot the possible equilibrium outcomes for different combinations of bank cash

flows, and summarize the results in Proposition 6.

Figure 3: Equilibrium of the fully-fledged model

Bank iθ∗1 θ∗2
θ

Bank j

θ∗1

θ∗2

D2

θ

Unique
equilibrium

Both
banks fail.

Multiple equilibria
Financial contagion.

Unique equilibrium
Bank j fails.

Unique
equilibrium

Bank i
fails.

Unique
equilibrium

Neither
bank fails.

Proposition 6. When one bank’s cash flow belongs to
[
θ∗1, θ

∗
2
)

and the other bank’s cash flow is

lower than θ∗2, multiple market equilibria exist, and financial contagion can happen because of

creditors’ pessimistic beliefs.

4.4 Application II: asset purchase programs

We show in this section that a regulator with commitment power can promote financial

stability even if she is not better informed than the asset buyers. The welfare-improving policy

intervention that we propose resembles asset purchase programs such as Term Asset-Backed

Securities Loan Facility (TALF).
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We consider the following policy intervention: the regulator makes a promise to purchase

bank assets at a unified price PA in case any bank run happens. In particular, the price PA does

not depend on the number of bank runs in the economy. The regulator is assumed to have full

commitment power and will not revoke his offer after having observed the actual number of

runs. Under the policy intervention, the model has a revised timeline as depicted in Figure 4.

Figure 4: Timing of the asset purchase program

t = 0 t = 0.5 t = 1 t = 2

Banks are established,
with their portfolios
and liability structures
as given.

The regulator makes
a promise to buy
assets at a unified
price PA, in case any
bank run happens.

1. s and θ̃ are realized.
2. Asset buyers post a price
scheme.
3. For each bank that they
lend to, creditors receive
private noisy signals about
the bank’s cash flow θ, and
decide to run or not.
4. Assets are sold to the
party that offers the highest
price.

1. Returns are
realized.
2. Remaining
obligations are
settled

The regulator is risk-neutral, and is subject to an ex-ante budget constraint: she should not

make any loss in expectation. To maximize social welfare, she will choose an optimal price P∗A

so that she only breaks even. This is because any lower price that leads to a positive expected

profit will come at the cost of letting more solvent banks fail in runs.

The regulator is different from the typical asset buyers in the market because she holds full

commitment power. In particular, she does not require to break even for each observed number

of bank runs, but only to break even from an ex-ante perspective. Such commitment power

allows the regulator to disregard new information such as the number of bank runs, and can

therefore avoid the vicious cycle fuelled by pessimistic belief updating.

We now derive the ex-ante break-even price P∗A. As a first step, we solve for price P∗A under

the assumption that banks will sell their assets to the regulator instead of to other asset buyers

in the secondary market. When wholesale creditors expect bank assets to be sold at price P∗A,

we know from Section 3.3 that the critical cash flow of the bank run game is θ̂(P∗A). So the

regulator understands that only those assets with θ < θ̂(P∗A) will be on sale, with θ̂(P∗A) again
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defined by expression (8).

θ̂(P∗A) =
D2 − D1

1 − qD1/P∗A
(23)

As the regulator commits to price P∗A before observing any bank runs, she holds the prior belief

Prob(s = G) = Prob(s = B) = 1/2. From this ex-ante perspective, the regulator’s break-even

condition can be written as follows.

P∗A =
1
2
θB + θ̂(P∗A)

2
+

1
2
θG + θ̂(P∗A)

2
(24)

Using expression (23), we can rewrite the ex-ante break-even condition (24) into a quadratic

function of P∗A, which has the following root between P and D2.

P∗A =
Ψ +

√
Ψ

2
− 8qD1E(θ)
4

(25)

Here E(θ) ≡ (θB + θG)/2, and Ψ ≡ (D2−D1) + 2qD1 + E(θ). Having obtained P∗A, we can derive

the corresponding θ̂(P∗A) using equation (23). Following the same procedure as in the proof of

Proposition 2, we can show that θ̂(P∗A) ∈
(
θL, θU(P∗A)

)
.

Lemma 5. If the regulator purchases banks’ assets for a pre-committed price, she can break

even from an ex-ante perspective by offering P∗A as specified in equation (25).

Proof. See Appendix B.8. �

We show in Proposition 7 that P∗A is higher than what market offers (i.e., P∗A > P∗1 > P∗2),

so that banks will indeed sell their assets to the regulator. As θ̂(P) decreases with P, the policy

intervention improves financial stability as compared to the market equilibria. In particular, the

asset purchase committed by the regulator reduces (though does not eliminate) the risk of bank

runs, and completely rules out financial contagion.

Proposition 7. The regulator’s ex-ante break-even price P∗A is higher than the prices in market

equilibria, so that banks will sell their assets to the regulator when they face runs. With P∗A >

P∗1 > P∗2, and θ̂(P∗A) < θ̂(P∗1) < θ̂(P∗2) , the regulator reduces the risk of bank runs and eliminates

financial contagion.

Proof. See Appendix B.9. �
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With her commitment power, the regulator can disregard the outcome of bank run games

and stick to a unified asset price. This allows the regulator to avoid the vicious cycle between

bank runs and asset fire sales that is fuelled by pessimistic beliefs in market. As the regulator

only needs to break even ex ante given her prior belief about State s, she can use the profit from

State G to compensate the loss in State B.

Typical buyers in the market, on the other hand, are unable to do so. Without the com-

mitment power, they must not make expected losses given any realized number of bank runs.

In other words, they are constrained by ex-post break-even conditions. In fact, if an asset

buyer offers the same price P∗A, she will revoke the offer when a bank run actually happens,

because in that case she will form a posterior belief that s = B is more likely and will no longer

consider herself breaking even by purchasing the bank assets at P∗A. To break even from this

ex-post perspective, the asset buyer has to lower her offered price, so as to decrease the loss

from purchasing assets with θ ∈
[
θs, P∗N

)
, and to increase the profit from purchasing assets with

θ ∈
î
P∗N , θ̂(P

∗
N)
ä
. The lack of commitment power therefore leads to a lower asset price, which

in turn results in more bank runs, and justifies the pessimistic belief in the first place.

This result naturally relates to Lender of Last Resort (LOLR) policies. The effectiveness

of such policies has long been debated, because a lender of last resort may not be able to tell

whether a troubled bank is insolvent or illiquid. As a result, it is argued that, blinded interven-

tion will compromise market discipline, whereas taking no action runs the risk of letting solvent

banks fail. The current model, however, shows that interventions such as asset purchase pro-

grams can still improve financial stability without demanding information on individual banks’

financial health. Even if such interventions are not perfect—banks with θ ∈
Ä
D2, θ̂(PA)

ä
still

fail because of illiquidity—our model shows that the dilemma faced by a Lender of Last Resort

is not as stark as one might think.

5 Further policy discussion

The model is rich enough for further policy analyses. We present here one more policy

implication for regulatory disclosure.23 We consider a scenario where a regulator has superior

information about the aggregate state s and can credibly disclose the information to market

23In reality, examples of the regulatory disclosure include communicating stress testing parameters to the public
or making announcements of the size of assistance programs.
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participants. We analyze the cost and benefit of such regulatory disclosure, and compare it with

asset purchase programs in terms of promoting financial stability.

5.1 Trade-offs for regulatory disclosure

To concentrate on the effects of disclosure, we focus on a simplistic case where the regulator

observes State s perfectly. Once the regulator decides to disclose the information, the realiza-

tion of s will be released before market trading. We also assume that the regulator can commit

to truthful revelations by legislation. The information set of asset buyers changes correspond-

ingly. Instead of updating beliefs about State s based on the number of bank runs, buyers now

learn the state with certainty. Therefore, asset prices can be conditional on the true state that

the regulator discloses.

The regulatory disclosure eliminates alternative beliefs as a source of multiple equilibria.

Instead of two rational expectations equilibria depending on buyers’ beliefs, there will be a

unique equilibrium for each disclosed (realized) state. Denote by
{
θ∗G, P

∗
G
}

and
{
θ∗B, P

∗
B
}

the

equilibrium critical cash flows and asset prices for State G and B respectively. Lemma 6 demon-

strates the effect of regulatory disclosure on banks’ illiquidity.

Lemma 6. When the aggregate State s is disclosed to market participants, there exists a unique

market equilibrium
{
θ∗s , P

∗
s
}

associated with each realized State s ∈ {G, B}. In State s, a bank

with cash flow θ ∈ [D2, θ
∗
s) will fail because of illiquidity. Such regulatory disclosure eliminates

the multiple equilibria caused by the asset buyers’ beliefs about the aggregate state.

Proof. See Appendix B.10 �

Intuitively, we have θ∗B > θ∗2 and θ∗G < θ∗1. Here θ∗B > θ∗2 because even when observing two

bank runs, buyers cannot exclude the possibility of s = G. But to the extent that a regulatory

disclosure s = B is accurate, buyers will bid according to s = B with certainty. Similarly,

making a favorable disclosure s = G further reassures market participants and can save banks

from illiquidity. The result is summarized in Proposition 8 and is illustrated by Figure 5.

Proposition 8. With θ∗G < θ∗1 and θ∗B > θ
∗
2, the regulatory disclosure reduces illiquidity if s = G

but increases it if s = B.

Proof. See Appendix B.11. �
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Figure 5: Equilibrium under regulatory disclosure

θ D2 θ∗G θ∗1 θ∗2 θ∗B θ

The disclosed information, when favorable, boosts asset prices and saves banks with θ ∈

(θ∗G, θ
∗
1) from illiquidity. Acknowledging a bad state, on the other hand, exacerbates liquidity

problems: solvent banks are more likely to suffer from illiquidity when market participants are

aware of the downside risk, and banks with θ ∈ (θ∗2, θ
∗
B) will fail because of runs. Therefore,

in determining whether to disclose information to the public, the regulator faces a trade-off:

if the state is good, the reassuring disclosure can calm down the market and save banks from

illiquidity; but if the state is unfavorable, acknowledging a crisis will result in even more runs

by pushing asset prices further down. Arguably, when the social cost of bank failure is greater

in State B, it can be suboptimal for regulators to commit to disclosing information.

5.2 Regulatory disclosure vs. Asset purchase

Now we run a horse race between different policy interventions, examining whether regu-

latory disclosures can outperform an asset purchase program as modelled in section 4.4. The

regulator is assumed to choose between the two policy interventions before State s realizes.

We show that an asset purchase program, which does not require superior information on the

aggregate state, can actually achieve a higher level of financial stability.

Note first that asset purchase programs and regulatory disclosures are mutually exclusive in

the current model. Once it has been credibly communicated that s = G, the equilibrium asset

price will be P∗G, which is higher than the break-even price P∗A in asset purchase programs. The

reason is that asset buyers are most optimistic when they learn the state is good with certainty.

Suppose that an asset purchase program and regulatory disclosure coexist, the regulator will

not acquire any assets in the good state unless her pre-committed price is higher than P∗G. Such

a price, however, implies making losses from an ex-ante perspective.

We then compare the asset purchase program and the regulatory disclosure. For simplicity,

we concentrate on the social cost of bank failures. We denote by C the social cost associated

with a bank failure and assume it to be independent of the number of bank failures and State

s. We denote by S CAP and S CRD the expected social costs associated with the asset purchase
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program and the regulatory disclosure, respectively. Recall that θ̂∗A is the critical cash flow for

the regulator’s ex-ante break-even price P∗A. S CAP can be formulated as follows.

S CAP =
1
2

[
θ∗A − θB

θ − θB
·
θ − θ∗A
θ − θB

2C +

Ç
θ∗A − θB

θ − θB

å2

2C
]
+

1
2

[
θ∗A − θG

θ − θG
·
θ − θ∗A
θ − θG

2C +

Ç
θ∗A − θG

θ − θG

å2

2C
]

Here the first (second) square bracket corresponds to the total expected cost of bank failures in

State B (State G), where there can be one or two bank failures. The expression can be further

simplified as follows.

S CAP =
θ∗A − θB

θ − θB
C +

θ∗A − θG

θ − θG
C (26)

Similarly, the expected social cost associated with the regulatory disclosure can be written as

S CRD =
θ∗B − θB

θ − θB
C +

θ∗G − θG

θ − θG
C. (27)

We show with Corollary 1 that the social cost associated with asset purchase programs is

lower if and only if θ > θGθ
∗
B+θBθ

∗
G−(θB+θG)θ∗A

θ∗B+θ∗G−2θ∗A
. This result stems from the fact that the critical cash

flow θ̂(P) is decreasing and convex in P, so that θ∗A <
(
θB + θG

)
/2.

Corollary 1. The expected social cost due to bank failures is lower under asset purchase pro-

grams than under regulatory disclosures if and only if θ > θGθ
∗
B+θBθ

∗
G−(θB+θG)θ∗A

θ∗B+θ∗G−2θ∗A
.

Proof. See Appendix B.12. �

6 Concluding remarks

In this paper, we have investigated the relationship between bank runs and asset fire sales.

We have presented a model where fire sales and bank runs are driven by the lack of information

and endogenously determined in a rational expectations equilibrium. We have also extended the

model to incorporate financial contagion when there is a common risk exposure. We can draw

several conclusions from our analysis. First, fire sales and bank runs and mutually reinforcing:

when creditors anticipate low prices for a bank’s assets, a run will be triggered, which gen-

erates asset fire sales and the corresponding collapse in prices, thus fully justifying creditors’

strategies. Second, as one bank fails, asset buyers lower their expectations of the common risk

factor and perceive banks’ assets to be less valuable: the declining asset prices will precipitate

contagious runs at all other banks.
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The model has derived three policy implications regarding bank capital, asset purchase pro-

grams and regulatory disclosure. First, contrary to the conventional wisdom, we have shown

that bank capital holding can have unintended consequences for funding liquidity, because a run

on a well-capitalized bank signals unusually high risk and exacerbates asset fire sales, which

in turn makes the run more likely. At the extreme, the model predicts that capital cannot re-

duce bank funding liquidity risk at all. Second, we have demonstrated that a regulator can

break down the vicious circle between asset fire sales and bank runs by committing to purchase

banks’ assets at a predetermined price. By implementing such a pre-committed asset purchase

program, regulators can promote financial stability and still break even from ex-ante perspec-

tive, even with no better information than other market participants. Finally, we have shown

that regulatory disclosure is a double-edged sword. It saves banks from illiquidity when the

disclosure is favorable. But, it amplifies funding liquidity risk and financial contagion when

the disclosure worsens market beliefs.
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Appendix A Bank run game for P ≤ PN < D2

In this appendix, we solve creditors’ bank run game for a given asset price PN ∈ [P,D2).

We first establish the existence of a lower (upper) dominance region, where it is a dominant

strategy for creditors to withdraw (wait) (Appendix A.1). Whereas outside of the dominance

regions, a creditor will choose his action according to his beliefs about other creditors’ actions.

We characterize such beliefs in Appendix A.2. Finally, we prove that an equilibrium with a

threshold strategy exists and is unique (Appendix A.3).

Appendix A.1 Lower and upper dominance regions

First, denoting the lower dominance region by
[
θ, θL), we prove its existence by construc-

tion. By definition, when a bank’s cash flow belongs to the region, a creditor would be better

off to withdraw even if all other creditors wait. This is the case if and only if inequality (6)

holds for L = 0 so that θ < F + (1 − E − F)rD = D2. In other words, the bank is fundamentally

insolvent and will fail at t = 2 even if no premature liquidation takes place at t = 1. In this case,

a creditor, if chooses to wait, will receive a zero payoff because of the bank failure, but will

receive qrD if he withdraws early. Therefore, if the creditor is sure that θ < D2 given his signal,

his best action is to withdraw, independently of his belief about the other creditors’ actions. As

a result, we have the dominance region
[
θ, θL) with θL = D2.

Second, denoting θU(PN) ≡ F/ (1 − D1/PN) for a given asset price PN , we show that the

upper dominance region is
î
θU(PN), θ

ó
. To see that it is a creditor’s dominant strategy to wait,

suppose that all other creditors withdraw early (L = 1) and the bank will survive if and only if

its cash flow θ ≥ θU(PN). In this case, if the creditor withdraws, he will receive qrD; whereas if

he waits, he will receive rD. Again, when the creditor’s signal is accurate, he will be sure that

the bank’s cash flow is in the upper dominance region, and will choose to wait independently of

his belief about other creditors’ actions. Note that θU(PN) decreases in PN , and we know that an

equilibrium cannot be lower than P. Therefore, θU(PN) has an upper bound F/ (1 − D1/P). Pro-

vided that θ is sufficiently high, θ > F/ (1 − D1/P), the upper dominance regions is guaranteed

to be non-empty.

Finally, as we will verify later, θU > θL will be automatically satisfied for equilibrium asset

prices.
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Appendix A.2 Creditors’ beliefs outside the dominance regions

When the bank’s realized cash flow is in the intermediate region
[
θL, θU(PN)

)
, a creditor’s

optimal action depends on his beliefs about other creditors’ actions. In this subsection, we

characterize such beliefs. We assume that creditors act according to a threshold strategy. That

is, creditors choose a threshold signal x̂, and a creditor i withdraws at t = 1 if his signal xi < x̂,

and waits until t = 2 if xi > x̂.

Note first that the fraction of creditors who withdraw early is a function of a bank’s realized

cash flow θ and the threshold signal x̂, because an individual creditor’s decision to withdraw or

not depends both on the realization of the cash flow and on the strategy of other players. We

denote this function by L = L(θ, x̂) and assume that creditors’ signals are sufficiently accurate

in the sense that the noise εi is distributed on an arbitrarily small interval (−ε, ε), with ε → 0.

In this limiting case, the threshold signal x̂ implies a threshold cash flow θ̂. A creditor i will

withdraw at t = 1 if xi < θ̂, and will wait till t = 2 if xi > θ̂. The fraction of early withdrawals

can be rewritten as L(θ, θ̂) accordingly.

Now, we determine the functional form of L(θ, θ̂). For a realized θ, we have three cases. (1)

When θ + ε < θ̂, even the highest possible signal is below the threshold θ̂. By the definition of

the threshold strategy, all creditors will withdraw at t = 1 and L(θ, θ̂) = 1. (2) When θ − ε > θ̂,

even the lowest possible signal exceeds the threshold θ̂. All creditors will wait till t = 2 and

L(θ, θ̂) = 0. (3) When θ falls into the intermediate range
î
θ̂ − ε, θ̂ + ε

ó
, the fraction of creditors

who withdraw at t = 1 is as follows.

L(θ, θ̂) = Prob
Ä
xi < θ̂

∣∣θä = Prob
Ä
εi < θ̂ − θ

∣∣θä =
θ̂ − θ − (−ε)

2ε
=
θ̂ − θ + ε

2ε
(A.28)

The realized fundamental θ looks uncertain from the perspective of creditors, because they

receive only noisy signals of it. With the noise εi uniformly distributed on [−ε, ε], a creditor who

receives a signal xi holds a posterior belief that θ follows a uniform distribution on [xi−ε, xi+ε].

Given that the fraction of creditors who withdraw is a function of the fundamental, each creditor

forms a posterior belief about the fraction L based on his private signal.

We now derive those posterior beliefs. To begin with, we show that L is uniformly dis-

tributed on [0, 1] from the perspective of a marginal creditor who happens to observe xi = θ̂.

Prob
(

L(θ, θ̂) ≤ L̂
∣∣∣xi = θ̂

)
= Prob

(
θ̂ − θ + ε

2ε
≤ L̂

)
= Prob

Ä
θ ≥ θ̂ + ε − 2ε L̂

ä
.
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We also know that, conditional on xi = θ̂, the marginal creditor has a posterior belief that θ is

uniformly distributed on [θ̂− ε, θ̂+ ε], which implies Prob
Ä
L(θ, θ̂) ≤ L̂

∣∣xi = θ̂
ä

= L̂. Therefore,

the marginal creditor holds a posterior belief that L ∼ U(0, 1).

Starting with case xi > θ̂, we now analyze creditors who receive signals other than θ̂. Recall

that a creditor who receives a signal xi holds a posterior belief θ ∼ U(xi − ε, xi + ε). For

xi > θ̂, the upper bound of the support is greater than θ̂ + ε, and we know that if θ > θ̂ + ε,

all creditors will wait. In fact, we can divide the support into two segments:
î
xi − ε, θ̂ + ε

ó
and

Ä
θ̂ + ε, xi + ε

ó
, with the second segment associated with L = 0. A creditor i who receives

xi > θ̂, therefore, will perceive a positive probability mass for L = 0. On the other hand,

the posterior belief of θ continues to have a uniform distribution on
î
xi − ε, θ̂ + ε

ó
. To see so,

note that
î
xi − ε, θ̂ + ε

ó
⊂
î
θ̂ − ε, θ̂ + ε

ó
given xi > θ̂, so that L(θ, θ̂) follows expression (A.28).

Therefore, for θ ∈
î
xi − ε, θ̂ + ε

ó
, we can derive the posterior belief on L as follows.

Prob
Ä
L(θ, θ̂) ≤ L̂

∣∣xi, xi > θ̂
ä

= Prob
(
θ̂ − θ + ε

2ε
≤ L̂

)
= Prob

Ä
θ ≥ θ̂ + ε − 2ε L̂

ä
Because the creditor perceives θ ∼ U(xi − ε, θ̂ + ε), the probability above can be calculated as

2ε L̂/
î
2ε − (xi − θ̂)

ó
, which implies that L follows a uniform distribution on

î
0, 1 −

Ä
xi − θ̂

ä
/2ε
ó
.

Notice that the density function on this interval is 1. Thus, the probability uniformly distributed

on this interval is 1 −
Ä
xi − θ̂

ä /
2ε, and the probability mass at L = 0 is

Ä
xi − θ̂

ä /
2ε.

Compared with marginal creditors who observe xi = θ̂, creditors observing xi > θ̂ hold more

optimistic beliefs that a smaller proportion of wholesale creditors will withdraw (reflected by

the positive probability mass placed on L = 0). As a marginal creditor who observes xi =

θ̂ is indifferent between ‘withdraw’ and ‘wait’, a creditor who observes xi > θ̂ will strictly

prefer ‘wait’. Moreover, the higher the signal, the more optimistic the creditor is, so that

Prob
Ä
L = 0

∣∣xi, xi > θ̂
ä

= (xi − θ̂)/2ε increases in xi.

Case xi < θ̂ can be analyzed by the same procedure. One can show that from the perspective

of a creditor who observes xi < θ̂, L again has a mixed distribution: it is uniformly distributed

on
î
(θ̂ − xi)/2ε, 1

ó
with density 1, and has a positive probability mass (θ̂ − xi)/2ε at L = 1.

Thus, compared with a marginal creditor who observes θ̂, a creditor who observes xi < θ̂ is

more pessimistic and more likely to withdraw. Moreover, a creditor i becomes more pessmisitic

when he receives a lower signal, i.e., Prob(L = 1
∣∣xi, xi > θ̂) = (θ̂ − xi)/2ε decreasing in xi.
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Appendix A.3 Threshold equilibrium

We have shown that a creditor whose signal is higher (lower) than a critical θ̂ is more prone

to wait (withdraw). Now we derive the value of this critical cash flow by studying the marginal

creditors who observe xi = θ̂. Such creditors perceive L ∼ U(0, 1), and are indifferent between

“withdraw” and “wait”. Their indifference condition can be expressed as the following.

∫ 1

0
DW(L)dL = 0

By the definition of DW(L) and LC (definitions in section 3.2), we can rewrite the indifference

condition as follows.

∫ Lc

0
(1 − q)rDdL −

∫ 1

Lc
qrDdL = (1 − q)rDLc − qrD(1 − Lc) = 0

This implies a unique critical cash flow θ̂.

θ̂(PN) =
D2 − D1

1 − qD1/PN

For a given asset price PN ∈ [P,D2), runs happen to banks with θ < θ̂(PN). Graphically, the

indifference condition requires the two shaded areas to be equal in size, as shown in Figure 6.

Figure 6: Payoff differences and the decision to withdraw

L

DW

L(θ, θ̂(PN))
1

0

Lc

(1 − q)rD

−qrD
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Appendix B Proofs to Lemmas, propositions, and corollaries

Appendix B.1 Proposition 2. Solution to the baseline model

Proof. Step 1: Recall that the equilibrium condition (12) is a quadratic function of Pe. Solving

it using the quadratic formula, we obtain the following two roots.24

P−e =
Ψ −

»
Ψ2 − 8qD1θ

4
and P+

e =
Ψ +

»
Ψ2 − 8qD1θ

4

Step 2: We show that only P+
e can be part of an equilibrium. First, one can verify that both

roots monotonically increase in q. In particular, one can show that ∂P−e /∂q increases in θ, and

equals zero when θ = 0. Therefore, ∂P−e /∂q ≥ 0 for ∀θ ≥ 0. Similarly, one can show that

∂P+
e /∂q decreases in θ, and is greater than zero for ∀θ < (2q − 1)D2. Since θ < (2q − 1)D2 is

guaranteed by assumption (4), we prove ∂P+
e /∂q > 0 as well.

Second, one can verify that P+
e is equal to P when q = 0, and is smaller than D2 when q = 1.

Whereas P−e is equal to 0 when q = 0, and is smaller than D1 when q = 1. We have shown in

section 3.1 that the equilibrium asset price must be between P and D2. As D1 < P, P−e cannot

be part of an equilibrium. Therefore, we retain only P+
e , and obtain the following closed-form

solution for the equilibrium asset price.

Pe =
Ψ +

»
Ψ2 − 8qD1θ

4

The equilibrium critical cash flow can be solved from zero profit condition Pe = (θe + θ) /2.

θe =
Ψ +

»
Ψ2 − 8qD1θ − 2θ

2

Step 3: We prove that the equilibrium θe is indeed between θL and θU(Pe). First, one can

verify that θe > θL = D2. By the closed-form solution of θe, the inequality can be explicitly

written as
»

Ψ2 − 8qD1θ > 2D2 + 2θ − Ψ. To see this is true, one can square both sides and

rearrange the terms to get (D2 + θ)Ψ − (D2 + θ)2 − 2qD1θ > 0. By the definition of Ψ, the

inequality further simplify to 2qD2 − D2 − θ > 0, which always holds by assumption (4).

24The parametric assumptions guarantee that Ψ2 − 8qD1θ is always positive.
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Finally, we show that θe < θU(Pe). Note that when the asset market is in its equilibrium, it

holds that θe = 2Pe − θ. Therefore, to show θe < θ
U(Pe) is equivalent to show

F
1 − D1/Pe

−
(
2Pe − θ

)
> 0,

or 2P2
e −

(
2D1 + θ + F

)
Pe + D1θ < 0. Using the closed-form solution of Pe, one can rewrite the

inequality as follows.

(1 − q)D1

1 − 2q
q

Ψ +
»

Ψ2 − 9qD1θ

4
+ θ

 < 0 (B.29)

One can verify that the part in the square bracket increases in θ, and equals zero when θ =

(2q − 1)D2. By assumption (4), we know that θ < (2q − 1)D2. Therefore, the part in the square

bracket must be negative, and this concludes the proof that θe < θ
U(Pe).

Note that this proof does not rely on a specific value of θ. Therefore, the result applies to

cases where θ takes the value of θB, or θG, or their (weighted) average. �

Appendix B.2 Proposition 3. Bank capital and illiquidity

Proof. First, we show that once asset price is endogenous, increasing capital does not reduce

the risk of bank run if θ = 0. To see so, note that using the closed-form solution of Pe, one can

rewrite expression (18) as follows.

∂IL
∂∆

= −
qD1

Pe − qD1

(Pe − qD1)
»

Ψ2 − 8qD1θ − (D2 − D1)Pe

(Pe − qD1)
»

Ψ2 − 8qD1θ

Denote the numerator of the second fraction by H(θ) ≡ (Pe−qD1)
»

Ψ2 − 8qD1θ− (D2−D1)Pe.

Note that when θ = 0, H(θ) = qD1Ψ and Pe =
[
(D2 − D1) + 2qD1

]
/2. Substituting in this

expression of Pe, we have H(θ) = 0. Therefore, for θ = 0, we obtain ∂IL/∂∆ = 0: increasing

capital has no effect on the risk of bank runs.

On the other hand, when θ > 0, it can be proved that H(θ) is positive, so that capital reduces

the risk of bank runs. Using the definition of Ψ and Pe, one can rewrite H(θ) as follows.

H(θ) =
(
θ − 2qD1

)(
Pe − qD1

)
+ qD1

(
D2 − D1

)
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We already know that H(θ) = 0 when θ = 0. Therefore, to prove that H(θ) > 0 for θ > 0, it is

sufficient to show ∂H/∂θ > 0. Note that ∂Pe/∂θ = (Pe − qD1)
/»

Ψ2 − 8qD1θ. We have

∂H
∂θ

= (Pe − qD1) + (θ − 2qD1)
∂Pe

∂θ

= (Pe − qD1)
(θ − 2qD1) +

»
Ψ2 − 8qD1θ»

Ψ2 − 8qD1θ
.

Finally, by verifying that (θ − 2qD1) +
»

Ψ2 − 8qD1θ > 0, we prove H(θ) > 0 for θ > 0. �

Appendix B.3 Lemma 2. The monotonicity of Π1(P1)

Proof. Recall that Π1(P1), as defined in (20), represents asset buyers’ expected payoff when

they have observed a single bank run and purchase bank assets at price P1. One can re-write

Π1(P1) as follows.

Π1(P1) =
θ̂(P1) + θG

2
−
θG − θB

2
ωB

1 (P1) − P1

Take the first order derivative with respect to P1, we have

∂Π1

∂P1
=

1
2
∂θ̂(P1)
∂P1

−
θG − θB

2
∂ωB

1 (P1)
∂P1

− 1. (B.30)

It is straightforward to see that ∂θ̂(P1)/∂P1 < 0. Furthermore, one can verify that

∂ωB
1 (P1)
∂P1

= −
∂θ̂(P1)
∂P1

θG − θBîÄ
θ̂(P1) − θB

ä
+
Ä
θ̂(P1) − θG

äó2 > 0.

With all three terms of expression (B.30) being negative, we can, therefore, conclude that

Π1(P1) monotonically decreases in P1.

In fact, the three terms of expression (B.30) are closely related to the intuition we discussed

in section 4.1. Here, ∂θ̂(P1)/∂P1 < 0 captures the fact that when asset buyers offer a higher

price, the bank is more likely to sell its asset for insolvency, therefore, the average quality of

the asset pool goes down. Whereas −∂ωB
1 /∂P1 < 0 captures the fact that when the bank run risk

is mitigated by a higher asset price, State B is more likely given that a bank run is observed,

which reduces the expected payoff of asset buyers as well. Finally, the last term captures the

increase in the extra cost for acquiring the bank’s assets. �
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Appendix B.4 Proposition 4. The existence and uniqueness of {P∗1, θ∗1}

Proof. The proof takes two steps. We first show the existence and uniqueness of a P∗1 ∈ (P,D2),

and then show that the corresponding θ∗1 is indeed between θL and θU(P∗1).

Step 1: We prove by continuity that there exists a unique P∗1 ∈ (P,D2) such that Π1(P∗1) = 0.

Note that the equilibrium condition can be written explicitly as the following.

Π1(P∗1) = ωB
1

Ä
θ̂(P∗1)

ä
πB
Ä
θ̂(P∗1)

ä
+ ωG

1

Ä
θ̂(P∗1)

ä
πG
Ä
θ̂(P∗1)

ä
= 0 (B.31)

Here πs(P1) ≡
Ä
θs + θ̂(P1)

ä
/2 − P1 denotes a buyer’s profit in State s when her offered price is

P1. One can show that, independently of State s, the buyer makes a profit if P1 = P. To see so,

note that a sufficient condition for πs(P) > 0 is θ̂(P) > D2, which is implied by assumption (4).

πs(P) =
θ̂(P) + θs

2
− P =

θ̂(P) + θs

2
−

D2 + θB

2
> 0

On the other hand, one can show that θ̂(D2) < D2 for ∀q < 1, so that the buyer makes a loss if

asset price P1 = D2.

πs(D2) =
θ̂(D2) + θs

2
− D2 <

D2 + θs

2
− D2 < 0

With the posterior beliefs ωB
1

Ä
θ̂(P1)

ä
and ωG

1

Ä
θ̂(P1)

ä
positive and smaller than one,25 we

know that Π1(P1) is positive when P1 = P and negative when P1 = D2. As Π1(P1) monotoni-

cally decreases in P1, we know by continuity that there exists a unique equilibrium P∗1 ∈ (P,D2)

such that Π1(P∗1) = 0.

Step 2: We now prove that the corresponding θ∗1 = θ̂(P∗1) is indeed between θL and θU(P∗1).

In fact, for any number of bank runs, N = 1, 2, 3, ..., denoting the equilibrium price associated

with N bank runs by P∗N , we have θL < θ∗N(P∗N) < θU(P∗N).

We start with the second inequality θ∗N(P∗N) < θU(P∗N). First, note that the equilibrium price

P∗N should be characterized by equation (9).

P∗N = ωB
N

Ä
θ̂(P∗N)

ä θB + θ̂(P∗N)
2

+ ωG
N

Ä
θ̂(P∗N)

ä θG + θ̂(P∗N)
2

(B.32)

25This result follows from θ̂(P1) > D2 > θG > θB, which we show in Step 2 of the proof.
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Here, we have

ωB
N =

Ä
θ̂(P∗N) − θB

äNÄ
θ̂(P∗N) − θB

äN
+
Ä
θ̂(P∗N) − θG

äN

as a general form of buyers’ posterior beliefs for s = B, when N bank runs are observed.

Defining θN(P∗N) ≡ ωB
N

Ä
θ̂(P∗N)

ä
· θB +ωG

N

Ä
θ̂(P∗N)

ä
· θG and Ψ(P∗N) ≡ (D2 −D1) + 2qD1 + θN(P∗N),

we can re-write equation (B.32) as follows.

2P∗2N − Ψ(P∗N)P∗N + qD1θN(P∗N) = 0 (B.33)

Further notice that, by the equilibrium condition (B.32), θ∗N(P∗N) < θU(P∗N) is equivalent to

θU(P∗N) =
F

1 − D1/P∗N
> θ̂(P∗N) = 2P∗N − θN(P∗N),

or, alternatively,

2P∗2N −
[
2D1 + θN(P∗N) + F

]
P∗N + D1θN(P∗N) < 0. (B.34)

Substituting (B.33) into (B.34) and using the defition of Ψ(P∗N), we obtain the following suffi-

cient and necessary condition for θ∗N(P∗N) < θU(P∗N).26

(1 − q)D1

ñ
1 − 2q

q
P∗N + θ(P∗N)

ô
< 0

Let CN ≡ (1 − 2q)P∗N/q + θ(P∗N), we show that CN is negative for N = 1, 2, 3, .... To see so,

first notice that CN < CN+1 for N = 1, 2, 3, .... In particular, we have

θN(P∗N) < θN+1(P∗N) < θN+1(P∗N+1).

The first inequality follws from the fact that, for a given price P, ωB
N(P) decreases in N, and

the second inquality follows from the fact that, for a given N, ωB
N(P) increases in P. Second,

one can show that CN < 0 holds for N = 0 and N → +∞. In fact, these two cases reduce to

a scenario where the posterior beliefs on State s do not depend on the asset price. We have

ωB
0 = 1/2 in the former case, and ωB

+∞ → 1 in the latter case. As a result, the two cases

degenerate to the baseline model we analyzed in Appendix B.1, and the analysis on inequality

26This condition is a counterpart of inequality (B.29).
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(B.29) directly applies. Therefore, we prove C0 < 0 and C+∞ < 0. Together with the fact that

CN increases in N, we can conclude that CN < 0 for N = 1, 2, 3, ....

Finally, it takes two steps to prove θL < θ∗N . First, one can show that even if the asset buyers

hold an extremely optimistic belief ωG
N = 1, there still exists a corresponding critical cash flow

θ∗G > θL (Lemma 6). Second, one can show that θ∗1 > θ∗G, because of buyers’ more pessimistic

beliefs about State s (Proposition 8). In fact, one can show that θL < θ∗N is generally true for

any θ∗N , N = 1, 2, 3, ... (Lemma 4). �

Appendix B.5 Lemma 3. The monotonicity of Π2(P2)

Proof. The proof resembles that of Lemma 2. One can re-write Π2(P2) as

Π2(P2) =
θ̂(P2) + θG

2
−
θG − θB

2
ωB

2 (P2) − P2,

and obtain its first order derivative with respect to P2,

∂Π2

∂P2
=

1
2
∂θ̂(P2)
∂P2

−
θG − θB

2
∂ωB

2 (P2)
∂P2

− 1. (B.35)

Again, one can prove that the belief about State s deteriorates with a higher asset price.

∂ωB
2 (P2)
∂P2

= −2
∂θ̂(P2)
∂P2

Ä
θ̂(P2) − θB

ä Ä
θ̂(P2) − θG

ä (
θG − θB

)
[Ä
θ̂(P1) − θB

ä2
+
Ä
θ̂(P1) − θG

ä2]2 > 0

With all three components of expression (B.35) being negative, we can conclude thtat Π2(P2)

monotonically decreases in P2. �

Appendix B.6 Proposition 5. The existence and uniqueness of {P∗2, θ∗2}

Proof. The proof follows the same argument as in Appendix B.4. Similar to that proof, the

equilibrium condition can be expressed as follows.

Π2(P∗2) = ωB
2

Ä
θ̂(P∗2)

ä
πB
Ä
θ̂(P∗2)

ä
+ ωG

2

Ä
θ̂(P∗2)

ä
πG
Ä
θ̂(P∗2)

ä
= 0 (B.36)

It still holds that, independent of State s, buyers make a profit when the asset price is P, and

a loss when the asset price is D2, i.e., πs
Ä
θ̂(P)

ä
> 0 and πs

Ä
θ̂(D2)

ä
< 0. Furthermore, it is
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straightforward to verify that the posterior beliefs ωG
2

Ä
θ̂(P2)

ä
and ωG

2

Ä
θ̂(P2)

ä
are both positive

and smaller than 1.

As a result, we prove that Π2(P2) is positive when P2 = P, and negative when P2 = D2.

Given that Π2(P2) monotonically decreases in P2, we know by continuity that there exists a

unique equilibrium P∗2 so that Π2(P∗2) = 0.

Finally, by the second half of Appendix B.4, we know that θ∗2 ∈
(
θL, θU(P∗2)

)
. �

Appendix B.7 Lemma 4. Financial contagion

Proof. Let P(θ̂) be the inverse function of θ̂(P). For any given critical cash flow θ̂, the proof

hinges on the monotonicity of two ratios.

ωB
2 (θ̂)

ωG
2 (θ̂)

=
(θ̂ − θB)2

(θ̂ − θG)2
and

πG(θ̂)
πB(θ̂)

=
(θ̂ + θG)/2 − P(θ̂)
(θ̂ + θB)/2 − P(θ̂)

The former is a conditional likelihood ratio, and the latter is a payoff ratio. Since ∂P(θ̂)/∂θ̂ < 0,

it can be shown that both ratios strictly monotonically decrease in θ̂ for θ̂ > D2.

d
dθ̂

(
ωB

2 (θ̂)
ωG

2 (θ̂)

)
= −

2(θ̂ − θB)(θG − θB)Ä
θ̂ − θG

ä3 < 0

d
dθ̂

(
πG(θ̂)
πB(θ̂)

)
= −

î
1/2 − ∂P(θ̂)/∂θ̂)

ó
(θG − θB)

2
[
θ̂+θB

2 − P(θ̂)
]2 < 0

Furthermore, notice that ωB
1 (θ̂)/ωG

1 (θ̂) > 1,
î
ωB

1 (θ̂)/ωG
1 (θ̂)
ó2

= ωB
2 (θ̂)/ωG

2 (θ̂), and therefore

ωB
1 (θ̂)

ωG
1 (θ̂)

<

[
ωB

1 (θ̂)
ωG

1 (θ̂)

]2

=
ωB

2 (θ̂)
ωG

2 (θ̂)
. (B.37)

We prove by contradiction. Suppose θ∗1 ≥ θ
∗
2. By the monotonicity of πG(θ̂)/πB(θ̂), we have

πG(θ∗1)
πB(θ∗1)

≤
πG(θ∗2)
πB(θ∗2)

. (B.38)

By equilibrium conditions (B.31) and (B.36), we have

πG(θ∗1)
πB(θ∗1)

= −
ωB

1 (θ∗1)
ωG

1 (θ∗1)
and

πG(θ∗2)
πB(θ∗2)

= −
ωB

2 (θ∗2)
ωG

2 (θ∗2)
.
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Together with (B.38), the two equations above imply that

ωB
2 (θ∗2)

ωG
2 (θ∗2)

≤
ωB

1 (θ∗1)
ωG

1 (θ∗1)
.

By inequality (B.37), we know

ωB
2 (θ∗2)

ωG
2 (θ∗2)

≤
ωB

1 (θ∗1)
ωG

1 (θ∗1)
<
ωB

2 (θ∗1)
ωG

2 (θ∗1)
.

But this contradicts the strict monotonicity of ωB
2 (θ̂)/ωG

2 (θ̂). Therefore, we prove θ∗2 > θ∗1. In

fact, one can modify this proof to show that θ∗N+1 > θ
∗
N , N = 1, 2, 3, ... is generally true. �

Appendix B.8 Lemma 5. Regulator’s break-even price P∗A

Proof. The proof resembles that in Appendix B.1. Inserting the expression of θ̂(PA) into the

regulator’s break-even condition (24), one can obtain the following quadratic equation of P∗A.

2P∗2A − ΨP∗A + qD1E(θ) = 0

The equation resembles (12) and has two roots. Following the proof in Appendix B.1, one can

verify that both roots increase in q, and that only the root with the positive sign

P∗A =
Ψ +

√
Ψ

2
− 8qD1E(θ)
4

falls in the interval [P,D2). Therefore, we have a unique break-even price P∗A for the regulator.

It also takes the same procedure as in Appendix B.1 to show θ∗A ∈
(
θL, θU(P∗A)

)
. �

Appendix B.9 Proposition 7. The impact of asset purchase programs

Proof. We denote by ΠA the regulator’s expected payoff when the regulator commits to buy

bank assets at a price PA. With θ̂A ≡ θ̂(PA), ΠA can be written explicitly as follows.

ΠA(θ̂A) =
1
2
θ̂A + θB

2
+

1
2
θ̂A + θG

2
−

qD1θ̂A

θ̂A − (D2 − D1)
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Denote θ̂1 ≡ θ̂(P1), Π1 can be written compactly as follows.

Π1 =
θ̂1 − θB

(θ̂1 − θB) + (θ̂1 − θG)
θ̂1 + θB

2
+

θ̂1 − θG

(θ̂1 − θB) + (θ̂1 − θG)
θ̂1 + θG

2
−

qD1θ̂1

θ̂1 − (D2 − D1)
(B.39)

Evaluating Π1(θ̂1) at θ∗A, we have

Π1(θ∗A) =
1
2
θB + θ∗A

2
+

1
2
θG + θ∗A

2
−

qD1θ
∗
A

θ∗A − (D2 − D1)
−

(
θG − θB

)2

4
[
(θ∗A − θG) + (θ∗A − θB)

]
= ΠA(θ∗A) −

(
θG − θB

)2

4
[
(θ∗A − θG) + (θ∗A − θB)

] .
The last term reflects deteriorating beliefs about State s. By its definition, θ∗A makes ΠA(θ∗A) = 0.

Therefore, we have

Π1(θ∗A) = −

(
θG − θB

)2

4
[
(θ∗A − θG) + (θ∗A − θB)

] < 0.

Since Π1(θ̂1) increases in θ̂1 and Π1(θ∗1) = 0, we prove θ∗A < θ
∗
1. The result P∗A > P∗1 immediately

follows. �

Appendix B.10 Lemma 6. Regulatory disclosure and bank runs

Proof. The proof follows that of Proposition 2. When the asset buyers know for sure that the

realized state is s, s ∈ {B,G}, the equilibrium θ∗s and P∗s are determined by a system of two

equations: the threshold equilibrium in the bank run game,

θ∗s =
D2 − D1

1 − qD1/P∗s
,

and the zero-profit condition in the secondary asset market,

P∗s =
θ∗s + θs

2
.

For each State s ∈ {B,G}, one can obtain a quadratic equation of P∗s, and solving it leads to two

roots. As only the one with the positive sign falls between P and D2, we can obtain closed-form
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solutions for P∗s and corresponding θ∗s .

P∗s =
Ψs +

»
Ψ2

G − 8qD1θs

4

θ∗s =
Ψs +

»
Ψ2

G − 8qD1θs − 2θs

2

Here Ψs ≡ (D2 − D1) + 2qD1 + θs. Following the same procedure in Appendix B.1, one can

prove that θ∗s ∈
(
θL, θU(P∗s)

)
. �

Appendix B.11 Proposition 8. Regulatory disclosure and illiquidity

Proof. The proof resembles that of Proposition 7. First, we prove θ∗G < θ∗1. Recall that Π1(θ̂1)—

as defined in (B.39)—monotonically increases in θ̂1 and equals zero when θ̂1 = θ∗1. Therefore,

θ∗G < θ∗1 will be true if and only if Π1(θ∗G) < 0. Evaluating Π1(θ̂1s) at θ∗G, we have

Π1(θ∗G) =
θ∗G + θG

2
−

qD1θ
∗
G

θ∗G − (D2 − D1)
+

θ∗G − θB

(θ∗G − θB) + (θ∗G − θG)

ñ
θ∗G + θB

2
−
θ∗G + θG

2

ô
=
θ∗G + θG

2
−

qD1θ
∗
G

θ∗G − (D2 − D1)
−

θ∗G − θB

(θ∗G − θB) + (θ∗G − θG)
θG − θB

2
.

Note that by the definition of θ∗G, it holds that

θ∗G + θG

2
−

qD1θ
∗
G

θ∗G − (D2 − D1)
=
θ∗G + θG

2
− P∗G = 0.

Â· Therefore, by evaluating Π1(θ) at θ∗G, we have

Π1(θ∗G) = −
θ∗G − θB

(θ∗G − θB) + (θ∗G − θG)
θG − θB

2
< 0,

which in turn implies θ∗G < θ∗1.

Now, following a similar procedure and denoting θ̂2 ≡ θ̂(P2), we prove θ∗B > θ
∗
2. Recall that

Π2(θ̂2) monotonically increases in θ̂2 and equals zero when θ̂2 = θ∗2. Therefore, θ∗B > θ∗2 will

hold if and only if Π2(θ∗B) > 0. Evaluating Π2(θ̂2) at θ∗B, we have

Π2(θ∗B) =
θ∗B + θB

2
−

qD1θ
∗
B

θ∗B − (D2 − D1)
+

(θ∗B − θG)2

(θ∗B − θB)2 + (θ∗B − θG)2

θG − θB

2
.
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Note that by the definition of θ∗B, it holds that

θ∗B + θG

2
−

qD1θ
∗
B

θ∗B − (D2 − D1)
=
θ∗B + θB

2
− P∗B = 0.

Therefore, when evaluating Π2(θ̂2) at θ∗B, we have

Π2(θ∗B) =
(θ∗B − θG)2

(θ∗B − θB)2 + (θ∗B − θG)2

θG − θB

2
> 0,

which in turn implies θ∗B > θ
∗
2. �

Appendix B.12 Corollary 1. Comparing policy interventions

Proof. It is straightforward to verify that S CAP < S CRD is true if and only if

θ∗A − θ
∗
B

θ − θB
<
θ∗G − θ

∗
A

θ − θG
. (B.40)

To derive the critical condition in corollary 1 and verify the expression is positive, one needs

to know θ∗A <
(
θB + θG

)
/2. To see so, recall that {θ∗A, P

∗
A} satisfies the threshold equilibrium (8)

and the regulator’s break even condition (24). Therefore, we have

2P∗A =
2qD1θ

∗
A

θ∗A − (D2 − D1)
= θ∗A +

θB + θG

2
. (B.41)

Consider an auxiliary function

G(θ) =
2qD1θ

θ − (D2 − D1)
− θ.

Then (B.41) can be written as

G(θ∗A) =
θB + θG

2
. (B.42)

Similarly, for market equilibrium where when State s is known due to disclosure, we can obtain

G(θ∗B) = θB, G(θ∗G) = θG, and

1
2

G(θ∗B) +
1
2

G(θ∗G) =
θB + θG

2
. (B.43)
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Combining equation (B.42) and (B.43), we have the following equality.

G(θ∗A) =
1
2

G(θ∗B) +
1
2

G(θ∗G)

One can verify that for θ > D2, function G(θ) is decreasing and convex.

∂G(θ)
∂θ

= −
2qD1(D2 − D1)
[θ − (D2 − D1)]2 − 1 < 0 and

∂2G(θ)
∂θ2 =

4qD1(D2 − D1)
[θ − (D2 − D1)]3 > 0

By the convexity of G(θ), we have

G(θ∗A) =
1
2

G(θ∗B) +
1
2

G(θ∗G) > G
Ç
θ∗B + θ∗G

2

å
Also, as function G(θ) decreases in θ, we obtain θ∗A <

(
θB + θG

)
/2.

With θ∗A <
(
θB + θG

)
/2, we can conclude that the social cost associated with bank failure is

lower under asset purchase programs than under regulatory disclosures if and only if

θ >
θGθ

∗
B + θBθ

∗
G −

(
θB + θG

)
θ∗A

θ∗B + θ∗G − 2θ∗A
> 0.

�
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