The decline of solvency contagion risk

Marco Bardoscia, Paolo Barucca, Adam Brinley Codd, John Hill
Info

- Any views expressed are solely those of author(s) and so cannot be taken to represent those of the Bank of England or to state Bank of England policy.

- Run solvency contagion on your own data! https://github.com/marcobardoscia/neva
Motivation

▪ One of the channels through which systemic risk spreads.
▪ Classic critique: there have been few cascades of default.
▪ However, pre-default losses matter:
 “Roughly two thirds of the losses attributed to counterparty credit risk were due to CVA losses and only about one third were due to actual default.”
▪ Banks mark their interbank assets to market pricing in the probability of default of their counterparty.
▪ Pre-default losses are a consequence of some ex-ante uncertainty.

Summary

▪ We extend a model of pre-default solvency contagion to the case in which bank can default at any point in time.

▪ We apply the model to UK data and we show that the risk associated to solvency contagion has sharply declined from the peak of the crisis.

▪ We decompose this fall into two main contribution: exposures and capital.
Short review

- Most empirical papers\(^1\) are based on a simple mechanism: when a bank defaults its creditors lose the full amount of their exposures towards the defaulted bank, recovery rate is zero.

- Eisenberg and Noe\(^2\): recovery rate to claims towards defaulted banks is endogenously determined, and in general larger than zero.

- EN + Monte Carlo can be used for pre-default contagion\(^3\), but it is not clear how to do it if banks can default at any point in time.

- We use the Neva framework\(^4\) based on valuation functions.

\(^1\)Furfine, JBCM 2003; Upper and Worms, EER 2004; Wells, BoE SWP 2004; Degryse et al, IJCB 2007; Cont et al, 2010; Mistrulli, JBF 2011.

\(^2\)Eisenberg and Noe, MS 2001.

\(^3\)Elsinger et al, MS 2006; Elsinger et al, IJCB 2006.

\(^4\)Barucca et al, SSRN 2016.
Model

- **Asset side:**
 - External assets (e.g. loans)
 - Interbank assets
- **Liability side:**
 - External liabilities (e.g. deposits)
 - Interbank liabilities
 - Equity
- **Balance sheet identity:**
 \[A_i^e + \sum_{j=1}^{n} A_{ij} = L_i^e + \sum_{j=1}^{n} L_{ij} + E_i \]
Valuation functions: Before maturity

- We perform a risk-neutral valuation of interbank claims at time $t < T$. The price of assets is computed as an average over the risk-neutral measure:

$$E_i(t) = A_i^e(t) + \sum_{j=1}^{n} A_{ij} \mathbb{E}^Q \left[\mathbb{V}_{ij}(E_j(T); \ldots) | \mathbb{A}^e(t) \right] - L_i^e - \sum_{j=1}^{n} L_{ij}$$

- The valuation of interbank assets is performed via a discount factor that incorporates the probability of default of the counterparty:

$$\mathbb{E}^Q \left[\mathbb{V}_{ij}(E_j(T); \ldots) | \mathbb{A}^e(t) \right] = 1 - p_j^D(E_j(t)) + \rho p_j^D(E_j(t))$$

- Banks can default at any time before the maturity (a la Black and Cox).
Valuation functions: Calibration

2008 (left) and 2015 (right), recovery rate = 0
Data

- We use real interbank exposures between banks part of the Bank of England’s annual concurrent stress test:
 - 7 banks, which account for 80% of the regulated UK lending
 - 2008 – 2013: exposures larger than 10% of equity
 - 2014 – 2015: no threshold, more granular data
- When possible (2013 – 2015) we interpret the equity of our model as the CET1 buffer, otherwise we use shareholders’ equity for consistency.
- Volatilities are estimated from returns of banks’ stock prices.
Simplified stress tests

- We run simplified stress tests. In the first “scenario” all banks suffer a homogeneous (relative) shock to their equity.
- Losses due to contagion (orange to purple) can be as large as the exogenous shock.
- Losses caused by direct exposures (orange to blue) can be as large as those caused by indirect exposures (blue to purple).
Contagion losses decline

Shock on equity = 40%, recovery rate = 0
Decomposing the fall

- In order to isolate the effect in changes of equity and exposures we build synthetic balance sheets:
 1. 2008 balance sheets with 2009 equity,
 2. 2008 balance sheets with 2009 equity and exposures,
- As a robustness check we also do vice versa.
Decomposing the fall

Shock on equity = 40%, recovery rate = 0

IWFSAS
Montreal – 25th August 2017
A more realistic scenario

- We also run a more realistic “scenario” in which our model is used as a macro-prudential “overlay” to the Bank of England’s annual concurrent stress test.

- In 2014, 2015, and 2016 we take the CET1 buffer at the point in time in which banks are most vulnerable (in terms of the CET1 to risk-weighted assets ratio) as the post-shock equity of our model.

- By setting the recovery rate equal to zero we get the following contagion losses:
 - 2013: £0bn
 - 2014: £0.2bn
 - 2015: £0.02bn
Conclusions

▪ The risk related to solvency contagion has shapely decreased from the peak of the crisis to today.

▪ We decompose the fall into two main drivers, equity and exposures.

▪ The distribution of equity matters: the contribution to contagion losses due to equity increases, even when capital in aggregate increases or stays constant.
Decomposing the fall

Shock on equity = 40%, recovery rate = 0
Decomposing the fall: Zooming in

Shock on equity = 40%, recovery rate = 0
Valuation functions: At maturity

- We take external assets at their market value, while liabilities do not change:

\[E_i(T) = A_i^e(T) + \sum_{j=1}^{n} A_{ij} \mathbb{V}_{ij}(E_j(T); \ldots) - L_i^e - \sum_{j=1}^{n} L_{ij} \]

- The valuation of interbank assets is performed via a discount factor:

\[\mathbb{V}_{ij}(E_j(T); \ldots) = \begin{cases} 1 & \text{for } E_j(T) > 0 \\ r_j(E_j(T); \ldots) & \text{for } E_j(T) \leq 0 \end{cases} \]

If the borrower has not defaulted, then the discount factor is equal to one and the interbank asset is worth its face value; otherwise it will be worth less.
Valuation functions: Before maturity

- We now perform a risk-neutral valuation at time $t < T$. The price of the assets is computed as an average over the risk-neutral measure:

$$E_i(t) = A_i^c(t) + \sum_{j=1}^{n} A_{ij} \mathbb{E}^Q[V_{ij}(E_j(T); \ldots)|A^e(t)] - L_i^c - \sum_{j=1}^{n} L_{ij}$$

- Let’s make a wild guess (assuming that we know the probabilities of default):

$$\mathbb{E}^Q[V_{ij}(E_j(T); \ldots)|A^e(t)] = 1 - p_j^D(E_j(t))$$

- A slightly more sophisticated guess:

$$\mathbb{E}^Q[V_{ij}(E_j(T); \ldots)|A^e(t)] = 1 - p_j^D(E_j(t)) + \rho p_j^D(E_j(t))$$
Valuation functions: Theorems

- We have a system of n non-linear equations, equities are the unknown.
- In Barucca et al. (2016) (under mild assumptions) it is shown that the equations to compute the equities have a greatest solution, i.e. a solution that is simultaneously optimal for all banks.
- In order to compute the greatest solution one simply has to iterate the equations for equities using the book value of equities as a starting point.
- In order to compute the losses due to a shock:
 1. Use post-shock equities as a starting point
 2. Find the fixed-point of the equations for equities