Interlinks of macro-prudential policy, banking characteristics, and the bank lending channel in Indonesia and other major Asia economies

The views expressed in this paper are of the author's only and do not necessarily reflect those of Bank Indonesia. All errors are the author's only.

Motivation

• Credit growth is a key driver for economy growth.

Graph 1. Credit/GDP Major Asia Countries

- Low credit growth may hamper the economy growth, but excessive growth may fuel greater risks for macro and financial stability.
- Effectiveness of monetary and macro-prudential polices to manage credit growth.

Graph 2. Indonesia credit, GDP growth, CB rate

Sources: BIS statistics and Bank Indonesia

The blue rectangular boxes represent loosening periods while the red rectangular box indicates tightening periods of macro-prudential policy.

Objective & Research questions

What factors drive credit growth in Indonesia and Asian economies?

- Funding liquidity ?
- Capitalization?
- Stability sources of funding?
- Off-b/s (credit commitment) activities?
- Monetary interest rate policy (bank lending channel)?
- Macro-prudential policy?
- Interaction of banking characteristics with monetary and macro-prudential policy?
- Interaction of monetary and macro-prudential policy?

Literature review

Credit growth & monetary policy (bank lending channel)

→ Bernanke&Blinder (1992), Kashyap&Stein (1994), Morris&Sellon (1995), Gambacorta & Marques-Ibanez (2011).

Credit growth & macro-prudential policy

→ cross countries evidence: Claessens, et al (2011), Lim, et al (2011), Zhang&Zoli (2014), Cerutti, et al (2017),

→ case study of a country: Igan&Kang (2011), Wong, *et al* (2011), Jimenez, *et al* (2012), Aiyer, *et al* (2014).

Credit growth & banking characteristics (liquidity, off-b/s activities, sources of financing, capital)

→ Bernanke & Lown (1991), Peek & Rosengreen (1995), Kashyap, et al (2002), Cornett, et al (2010), Gambacorta & Marques-Ibanez (2011), Kapan & Minoiu (2013), Berrospide & Meisenzahl (2015).

Data

- Indonesia case: quarterly macro-economic and individual data of 94 Indonesian commercial banks over the period of 2005-2016.
- Other Asia case: annual macro-economic and individual data for 74 banks in China, India, South Korea, Hong Kong, Singapore, Thailand, Malaysia, and Philippine over 2004-2015.
- Dummy variables of macro-prudential policy (MPI):
 - Indonesia case, MPI = 1 for loosening periods, -1 for tightening, and 0 otherwise
 - Other Asia case, MPI=1 for tightening periods and -1 for loosening periods.

Date	Macro-prudential measures in Indonesia		Loosening periods	Tightening periods
	initial implementation of RRLDR to increase credit growth within manageable liquidity risk,	Singapore	2004-2009	2010-2015
March 2011	tolarable LDR range:78%-100%		2004-2008	2009-2015
September 2012	initial implementation of loan-to-value ratio (LTV) with upper limit at 70%	Malaysia	2008-2009	2004-2007, 2010-2015
September 2013	tightening LTV (for second, third, etc house purchases) to contain high house price growth	China	2008-2009, 2014-2015	2004-2007,2010-2013
December 2013	decreasing upper bound of the RRLDR due to high liquidity pressure in banking system,	India	2009	2004-2008, 2010-2015
Juno 2015	tolarable LDK range : 78%-92%		2008, 2010, 2014-2015	2004-2007, 2009, 2011-2013
August 2015	increasing lower bound of RRIDR to increase credit growth tolarable IDR range: 80%-92%	Thailand	2008-2009	2004-2007, 2010-2015
1050302010	loosening LTV from 80% to 85%	Philippine	2008-2010	2004-2007, 2011-2015

Methodology (1)

 Expanding/ modifying Kashyap & Stein (1994), Gambacorta & Marques-Ibanez (2011)

 $\Delta log(credit)_{ijt} = \theta \Delta log(credit)_{ijt-1} + \gamma \Delta log(GDP)_{jt-k} + \alpha \Delta log(CPI)_{jt-k} + \varphi MPI_{jt-k} + (\beta + \beta^* MPI_{jt-k}) \Delta CB_{jt-k} + (\delta + \delta^* MPI_{jt-k}) X_{ijt-k} + \pi X_{ijt-k} \Delta CB_{jt-k} + \varepsilon_{ijt}$ (1)

For Indonesia, two-period implementation of loosening MP policy: MPI1(Q1 2011-Q2 2012) and MPI2(Q3 2015 - Q4 2016)

$$\begin{split} &\Delta log(credit)_{it} = \\ &\theta \Delta log(credit)_{it-1} + \gamma \Delta log(GDP)_{t-k} + \alpha \Delta log(CPI)_{t-k} + \varphi_1 MPI1_{t-k} + \varphi_2 MPI2_{t-k} + \\ &(\beta_1 + \beta_1^* MPI1_{t-k}) \Delta CB_{t-k} + (\beta_2 + \beta_2^* MPI2_{t-k}) \Delta CB_{t-k} + (\delta_1 + \delta_1^* MPI1_{t-k}) X_{it-k} + \\ &(\delta_2 + \delta_2^* MPI2_{t-k}) X_{it-k} + \pi X_{it-k} \Delta CB_{t-k} + \varepsilon_{it} \end{split}$$

(2)

Methodology (2)

Independent	Variables' description	Expected
variables		sign
LA/D	Ratio of liquid assets (cash, placement at the central bank, and	+
	high-grade securities) to deposit (%).	
Committed credit	Ratio of undisbursed committed loan to sum of total asset and	+/-
	undisbursed committed loan (%).	
NC/D	Ratio of unstable funds or non-core deposit (wholesale funds,	-
	short- term debts or market-based funding) to stable funds	
	(deposit) (%).	
Cap_buffer	Deviation of realized Capital Adequacy Ratio (CAR) to	+/-
	regulatory minimum capital requirement ratio (%). It is ratio	
	of equity to total asset Eq/TA for other Asia economies.	
Δlog(GDP)	The quarterly change of log of gross domestic product.	+
ΔСВ	The quarterly change of monetary policy interest rate.	-
Δlog(CPI)	The quarterly change of log of Consumer Price Index	+/-
MPI	Indonesia: loosening phase 1 & 2 of macro-prudential policies	Indonesia: +
	are coded 1, tightening phase is coded -1.	Other Asia: -
	Other Asia: tightening phases are coded 1, loosening ones are	
	-1.	

Methodology (3)

- Dynamic panel model: Two-step Arellano-Bover/Blundell-Bond Generalized Method of Moments (GMM).
- A consistent estimator, subject to θ of Δlog(credit)_{it-1} of GMM lies between those of FELS (downward bias) and OLS (upward bias) (Bond (2002), Roodman (2006)).
- Otherwise, utilize FELS with Nickel bias $\frac{1}{T-1}$
 - For large *T*, dynamic panel bias is insignificant,
 - Number of instruments tend to explode with *T* (Roodman, 2006).
- Endogeneity : utilizing lagged of explanatory variables

Indor	iesia	case

	Dependent Variable: ∆log (credit)					
	GMM Arrelano- Bover/Blundell-Bond	OLS	FELS			
	All banks	All banks	All banks			
Δlog (credit) (-1)	0.047	0.243***	0.182***			
LA/D (-2)	0.855**	0.658***	1.033***			
NC/D(-4)	-1.090***	-0.341***	-0.901***			
Committed credit (-4)	-1.160**	-0.547***	-0.255			
Cap_buffer (-2)	1.832***	0.575***	0.771***			
ΔСВ (-2)	-0.572*	-0.611***	-0.497***			
Δlog(GDP) (-1)	0.292***	0.257***	0.258***			
Δlog(CPI) (-2)	0.240**	0.227***	0.164			
MPI1 (-1)	0.596	0.788***	0.664**			
MPI1 (-1)*ΔCB (-2)	-2.955***	-3.084***	-3.221***			
MPI1 (-1)*LA/D (-2)	1.426	0.706**	0.981**			
MPI1 (-1)*NC/D (-4)	-0.472	0.117	-0.021			
MPI1 (-1)*Committed_credit (-4)	-0.883	0.021	0.048			
MPI1 (-1)*Cap_buffer (-2)	-1.306	-0.678***	-1.009***			
MPI2 (-1)	-1.452**	-1.548***	-1.690***			
MPI2 (-1)*ΔCB (-2)	3.638**	3.400***	3.266***			
MPI2 (-1)*LA/D (-2)	-2.817*	-1.196***	-1.605***			
MPI2 (-1)*NC/D (-4)	-0.080	-0.600***	-0.559*			
MPI2 (-1)*Committed_credit (-4)	-0.883	-0.540**	-0.469			
MPI2 (-1)*Cap_buffer (-2)	-1.306	0.356	0.405			
ΔCB (-2)*LA/D (-2)	0.010	-0.098	-0.080			
ΔCB (-2)*NC/D (-4)	-0.232	-0.440**	-0.413**			
∆CB (-2)*Committed_credit (-4)	0.035	-0.294*	-0.286*			
ΔCB (-2)*Cap_buffer (-2)	0.069	-0.084	-0.093			
cons	2.815***	2.019***	2.377***			
Time fixed effect	No	No	No			
Bank fixed effect	No	No	Yes			
K-sqr		0.1/	0.15			
No obs	3621	3621	3621			

Note: *, **, *** indicate statistical significance at the level of 10%, 5%, and 1%, respectively

Indonesia case: credit risk (NPL) & price efficiency (NIM)

	Dependent varia	able: Δlog (credit)
	All banks	All banks
Δlog (credit) (-1)	0.167***	0.164***
LA/D (-2)	1.062***	1.072***
NC/D(-4)	-0.840***	-0.747***
Committed credit (-4)	-0.210	-0.176
Cap_buffer (-2)	0.897***	0.843***
NPL (-2)	-1.084***	-1.044***
NIM (-2)	-0.743***	-0.703***
ΔCB (-2)	-0.500***	-0.670***
Δlog(GDP) (-1)	0.288***	0.277***
Δlog(CPI) (-2)	0.221**	0.200**
MPI1 (-1)	0.716**	0.741*
MPI1 (-1)*ΔCB (-2)	-2.893***	-2.841***
MPI1 (-1)*LA/D (-2)	0.834*	0.782*
MPI1 (-1)*NC/D (-4)	0.008	
MPI1 (-1)*Committed_credit (-4)	0.079	
MPI1 (-1)*Cap_buffer (-2)	-0.957**	-0.927***
MPI1 (-1)*NPL (-2)		0.529
MPI1 (-1)*NIM (-2)		-0.318
MPI2 (-1)	-1.519***	-1.384***
MPI2 (-1)*ΔCB (-2)	3.253***	2.892***
MPI2 (-1)*LA/D (-2)	-1.476***	-1.324**
MPI2 (-1)*NC/D (-4)	-0.555**	
MPI2 (-1)*Committed_credit (-4)	-0.457	
MPI2 (-1)*Cap_buffer (-2)	0.502	0.343
MPI2 (-1)*NPL (-2)		-0.605
MPI2 (-1)*NIM (-2)		0.636*
ΔCB (-2)*LA/D (-2)	-0.152	-0.122
ΔCB (-2)*NC/D (-4)	-0.393**	
ΔCB (-2)*Committed_credit (-4)	-0.324**	
ΔCB (-2)*Cap_buffer (-2)	-0.106	-0.124
ΔCB (-2)*NPL (-2)		0.096
ΔCB (-2)*NIM (-2)		0.250**
cons	2.217***	2.305***
Time fixed effect	No	No
Bank fixed effect	Yes	Yes
No obs	3565	3567

Note: FELS result. *, **, *** indicate statistical significance at the level of 10%, 5%, and 1%, respectively

Indonesia case: A rise of risk-averse behaviour due to liquidity and credit risk pressure leads to lower credit growth

Data sources: Bank Indonesia and OJK

The blue rectangular box represents phase I of MP while the red rectangular box indicates phase II of MP policy.

Other Asian Case

	Dependent Variable: ∆log (credit)			Dependent Variable: ∆log (credit)			
	GMM Arrelano- Bover/Blundell-Bond	OLS	FELS	GMM Arrelano- Bover/Blundell-Bond	OLS	FELS	
Δlog (credit) (-1)	0.103*	0.283***	0.072	0.105*	0.283***	0.074*	
LA/D (-1)	2.175*	0.302	0.808	2.213**	0.324	0.773	
NC/D(-1)	-4.116*	-0.207	-3.525***	-3.944**	-0.181	-3.230***	
Offbs (-1)	3.062**	1.345***	1.958***	2.847*	1.597***	1.845***	
Eq/TA (-1)	-3.861**	-0.585	-2.531*	-3.976**	-0.598	-2,509*	
ΔСВ (-1)	-0.454*	-0.624***	-0.065	-0.487**	-0.632***	-0.058	
Δlog(GDP) (-1)	0.287***	0.483***	0.585***	0.335***	0.488***	0.579***	
∆log(CPI) (-1)	-0.781**	-0.514**	-1.654***	-0.988***	-0.542***	-1.635***	
MPI (-1)	-1.527**	-1.644***	-1.460***	-1.726**	-1.630***	-1.470***	
MPI (-1)*ΔCB (-1)	0.146	-0.052	-0.077	0.118	-0.088	-0.062	
MPI (-1)*LA/D (-1)	0.044	0.249	-0.014				
MPI (-1)*NC/D (-1)	-0.015	0.121	-0.105				
MPI (-1)*Offbs (-1)	0.027	0.502	-0.222				
MPI (-1)*Eq/TA(-1)	-1.450	-0.697	-0.335	-1.211	-0.585	-0.346	
ΔCB (-1)*LA/D (-1)	0.401	0.274	0.094				
ΔCB (-1)*NC/D (-1)	-0.140	-0.071	-0.163				
ΔCB (-1)*Offbs (-1)	0.032	0.502	0.140				
ΔCB (-1)*Eq/TA (-1)	0.626***	0.419**	0.478***	0.649***	0.442**	0.531***	
cons	14.141***	7.771***	14.958***	14.618***	7.789***	14.833***	
Time fixed effect	No	No	No	No	No	No	
Bank fixed effect	No	No	Yes	No	No	Yes	
R-sqr		0.35	0.29		0.34	0.29	
AR 1 (z-stat)	-4.726***			-4.723***			
AR 2 (z-stat)	-1.002			-1.377			
No obs	575	653	653	583	653	653	

Conclusion: Indonesia case

- Higher credit growth is attributed to prior higher liquidity, less reliable to unstable sources of funds, higher capital buffer, and lower credit risk.
- The effectiveness of accommodative macro-prudential policies to improve credit growth is diminished across time.
- The ineffectiveness of both loosening monetary and macro-prudential policies to improve credit growth since 2015 is due to intensifying of banking risk averse behaviour:
 - > a prior low liquidity level encourages them to set a higher liquidity level

rising credit risk triggers banks to keep credit interest rate relatively high.

Policy challenges in Indonesia are to address a sensible balance of the trade-off between banking stability and (credit) growth.

Conclusion: Asian case

- Higher credit growth is attributed to prior higher liquidity, less reliable to unstable sources of funds, lower capital buffer, and intense off-b/s activities.
- Lower (higher) monetary interest rates leads to higher (lower) credit growth, the economic impact is somewhat small.
- Moderate effectiveness of tightening macro-prudential policies to curb credit growth.

Further concern

- Potential asymmetric impact of macro-prudential measures: are (tightening) macro-prudential measures more effective for restricting credit growth than (loosening) for promoting credit growth?
- Effectiveness of (loosening) policies is subject to bank's risk condition.

Appendix: Descriptive statistics

Indonesia

	Δ log(credit) (%)	LA/D (%)	NC/D (%)	Committed credit (%)	Cap_buffer (%)	NIM (%)	NPL (%)	∆GDP (%)	∆CB (%)	∆CPI (%)
Mean	4.66	35.04	7.54	5.05	11.95	5.97	3.02	3.45	-0.06	1.61
Median	4.13	31.46	4.60	2.44	9.85	5.37	2.21	4.40	0.00	1.55
Min	-18.24	6.22	0.00	0.00	-2.35	1.32	0.00	-2.82	-1.50	-1.26
Max	39.60	99.95	46.04	30.31	46.24	15.65	51.33	10.31	2.75	9.60
Std. deviation	7.22	15.73	8.35	5.89	8.00	2.59	3.83	3.24	0.73	1.75
No. obs	4419	4413	4286	4467	4226	4446	4438	4418	4418	4418

Other Asia

	∆ log(credit) (%)	LA/D (%)	NC/D (%)	Offbs (%)	Eq/TA (%)	∆CB (%)	∆CPI (%)
Mean	15.34	20.96	58.19	21.31	7.75	-0.04	3.67
Median	15.11	18.43	18.33	20.25	7.19	0.00	3.18
Min	-14.30	3.48	0.77	0.00	1.18	-12.70	-0.90
Max	64.92	71.81	1494.40	71.52	15.98	8.90	9.80
Std. deviation	12.46	22.83	180.47	13.90	2.95	2.64	2.36
No. obs	784	858	858	844	857	814	814